خيارات البحث
النتائج 1 - 10 من 65
The beta-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha
2010
Contardo-Jara, Valeska | Pflugmacher, Stephan | Nutzmann, Gunnar | Kloas, Werner | Wiegand, Claudia
Due to increasing amounts of pharmaceutically active compounds (PhACs) in the aquatic environment, their largely unknown effects to non-target organisms need to be assessed. This study examined physiological changes in the freshwater mussel Dreissena polymorpha exposed to increasing concentrations (0.534, 5.34, 53.4 and 534 mg L1) of the b-blocker metoprolol in a flow-through system for seven days.The two lower concentrations represent the environmentally relevant range. Surprisingly, metallothionein mRNA was immediately up-regulated in all treatments. For the two higher concentrations mRNA up-regulation in gills was found for P-glycoprotein after one day, and after four days for pi class glutathione S-transferase, demonstrating elimination and biotransformation processes, respectively. Additionally, catalase and superoxide dismutase were up-regulated in the digestive gland indicating oxidative stress. In all treated mussels a significant up-regulation of heat shock protein mRNA was observed in gills after four days, which suggests protein damage and the requirement for repair processes. Metoprolol was 20-fold bioaccumulated for environmentally relevant concentrations. | International audience
اظهر المزيد [+] اقل [-]Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha
2011
Contardo-Jara, Valeska | Lorenz, Claudia | Pflugmacher, Stephan | Nutzmann, Gunnar | Kloas, Werner | Wiegand, Claudia | Ecophysiology and Aquaculture, Leibniz Berlin ; Leibniz | Ecohydrology, Leibniz Berlin ; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | University of Southern Denmark (SDU)
International audience | Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the nontarget organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 mg L-1) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 mg L-1) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage.
اظهر المزيد [+] اقل [-]Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure.
2010
Lance, Emilie | Neffling, Milla Riina | Gerard, Claudia | Meriluoto, Jussi | Bormans, Myriam | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Åbo Academy University | Ministere des Affaires Etrangeres francais et finois
International audience | Accumulation of free microcystins (MCs) in freshwater gastropods has been demonstrated but accumulation of MCs covalently bound to tissues has never been considered so far. Here, we follow the accumulation of total (free and bound) MCs in Lymnaea stagnalis exposed to i) dissolved MC-LR (33 and 100 μg L−1) and ii) Planktothrix agardhii suspensions producing 5 and 33 μg MC-LR equivalents L−1 over a 5-week period, and after a 3-week depuration period. Snails exposed to dissolved MC-LR accumulated up to 0.26 μg total MCs g−1 dry weight (DW), with no detection of bound MCs. Snails exposed to MCs producing P. agardhii accumulated up to 69.9 μg total MCs g−1 DW, of which from 17.7 to 66.7% were bound. After depuration, up to 15.3 μg g−1 DW of bound MCs were detected in snails previously exposed to toxic cyanobacteria, representing a potential source of MCs transfer through the food web. The study concerns accumulation and elimination of both free and bound microcystins (MCs) in tissues of a gastropod exposed to MCs producing cyanobacteria or dissolved MC-LR.
اظهر المزيد [+] اقل [-][Monitoring the decontamination degree of the slurry using the alternative aerobic and anaerobic fermentations]
2001
Tibru, I. | Nichita, I. | Savescu, E. | Mircov, V.D. (Facultatea de Medicina Veterinara, Timisoara (Romania))
This paper presents the results obtained after an alternative treatment (aerobic and anaerobic) of the animal slurry. We discussed only about the problems related to the effects of denitrification and dephosphatation on coliform bacteria. We noticed a good decontamination of the slurry using alternatively the two procedures. To determine the decontamination degree we used the classical multiple tubes method. The same samples were examined through the field microbiological test (FMT) adding Kovacs reagent. There is a concordance between the coliform bacteria determined through the classical method and the number determined through FMT to which the Kovacs reagent adding increases the sensitivity degree.
اظهر المزيد [+] اقل [-]Reciprocal interactions between anthropogenic stressors and insect microbiota
2022
Antonelli, Pierre | Duval, Pénélope | Luis, Patricia | Minard, Guillaume | Valiente Moro, Claire | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Insects play many important roles in nature due to their diversity, ecological role, and impact on agriculture or human health. They are directly influenced by environmental changes and in particular anthropic activities that constitute an important driver of change in the environmental characteristics. Insects face numerous anthropogenic stressors and have evolved various detoxication mechanisms to survive and/or resist to these compounds. Recent studies highligted the pressure exerted by xenobiotics on insect life-cycle and the important role of insect-associated bacterial microbiota in the insect responses to environmental changes. Stressor exposure can have various impacts on the composition and structure of insect microbiota that in turn may influence insect biology. Moreover, bacterial communities associated with insects can be directly or indirectly involved in detoxification processes with the selection of certain microorganisms capable of degrading xenobiotics. Further studies are needed to assess the role of insect-associated microbiota as key contributor to the xenobiotic metabolism and thus as a driver for insect adaptation to polluted habitats.
اظهر المزيد [+] اقل [-]Imidacloprid-induced pathophysiological damage in the midgut of Locusta migratoria (Orthoptera: Acrididae) in the field
2022
El-Samad, Lamia | El-Gerbed, Mohamed | Hussein, Hanaa | Flaven-Pouchon, Justin | El Wakil, Abeer | Moussian, Bernard | Alexandria University [Alexandrie] | Damanhour University [Egypte] | Centro Interdisciplinario de Neurociencias de Valparaíso ; Universidad de Valparaiso [Chile] | Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA) ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) | Université Nice Sophia Antipolis (1965 - 2019) (UNS) | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UniCA) | German Research Foundation (DFG)DFG MO1714/9
International audience | Neonicotinoids are modern insecticides widely used in agriculture worldwide. Their impact on target (nervous system) and non-target (midgut) tissues has been well studied in beneficial insects including honeybees under controlled conditions. However, their detailed effects on pest insects on the field are missing to date. Here, we have studied the effects of the neonicotinoid imidacloprid on the midgut of the pest insect Locusta migratoria caught in the field. We found that in the midgut of imidacloprid-exposed locusts the activity of enzymes involved in reactive oxygen metabolism was perturbed. By contrast, the activity of P450 enzymes that have been shown to be activated in a detoxification response and that were also reported to produce reactive oxygen species was elevated. Probably as a consequence, markers of oxidative stress including protein carbonylation and lipid peroxidation accumulated in midgut samples of these locusts. Histological analyses revealed that their midgut epithelium is disorganized and that the brush border of the epithelial cells is markedly reduced. Indeed, microvilli are significantly shorter, misshapen and possibly non-functional in imidacloprid-treated locusts. We hypothesize that imidacloprid induces oxidative stress in the locust midgut, thereby changing the shape of midgut epithelial cells and probably in turn compromising their physiological function. Presumably, these effects reduce the survival rate of imidacloprid-treated locusts and the damage they cause in the field.
اظهر المزيد [+] اقل [-]ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water
2021
Karuppasamy, K. | Rabani, Iqra | Vikraman, Dhanasekaran | Bathula, Chinna | Theerthagiri, J. | Bose, Ranjith | Yim, Chang-Joo | Kathalingam, A. | Seo, Young-Soo | Kim, Hyun-Seok
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh–B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh–B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh–B.
اظهر المزيد [+] اقل [-]Insight into metabolism pathways of pesticide fomesafen in rice: Reducing cropping and environmental risks
2021
Chen, Zhao Jie | Qiao, Yu Xin | Zhang, Nan | Liu, Jintong | Yang, Hong
Fomesafen (FSA) is widely used in soybean fields for weed control. However, the persisting characteristics of FSA in the agricultural soil or water may become a hidden danger causing environmental pollution and phytotoxicity to succession crops. In this study, the growth and physiological responses of rice to FSA were investigated. It was found that the growth of rice seedlings was obviously inhibited by FSA exposure especially at over 0.1 mg L⁻¹. To gain an insight into the molecular mechanisms for the potential ecotoxicology, four libraries of rice roots and shoots exposed to FSA were created and subjected to the global RNA-sequencing (RNA-Seq) combined with HRLC-Q-TOF-MS/MS analytical technologies to comprehensively characterize the biochemical processes and catalytic reactions involved in FSA metabolism in rice. Compared with those without FSA, 499 and 450 up-regulated genes in roots and shoots with FSA were detected. Many of them were closely correlated with the tolerance to environmental stress, detoxification of xenobiotics and molecular metabolism process including cytochrome P450, glutathione S-transferases and acetyltransferase. A total of eight metabolites and fourteen conjugates in the reactive pathways of hydrolysis, substitution, reduction, methylation, glycosylation, acetylation, and malonylation were characterized by HRLC-Q-TOF-MS/MS. The relationship between the metabolized derivatives of FSA and enhanced expression the corresponding enzymatic regulators was established. This study will help understand the mechanisms and pathways of FSA metabolism and inspire the further research on FSA degradation in the paddy crops and environmental or health risks.
اظهر المزيد [+] اقل [-]Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings
2021
Zhang, Nan | Huang, Lin | Zhang, Yuxue | Liu, Lijuan | Sun, Chengliang | Lin, Xianyong
Sulfur, an essential macronutrient, plays important roles in plant development and stress mitigation. Sulfur deficiency, a common problem in agricultural soils, may disturb plant stress resistance and xenobiotic detoxification. In the present study, the function and mechanism of limited sulfur nutrition on the residues and phtotoxicity of imidacloprid were investigated in lettuce plants. Sulfur deficiency significantly increased imidacloprid accumulation in lettuce tissues, exacerbated imidacloprid biological toxicity by enhancing the accumulation of toxic metabolites, like imidacloprid-olefin. Simultaneously, imidacloprid-induced detoxification enzymes including cytochromes P450, glutathione S-transferases (GSTs) and glycosyltransferases were inhibited under limited sulfur supply. On the other hand, sulfur deficiency further enhanced the generation of reactive oxygen species and exacerbated lipid peroxidation in lettuce tissues. Sulfur deficiency mainly reduced the abundance of thiol groups, which are essential redox modulators as well as xenobiotic conjugators, and significantly inhibited GSTs expression. These results clearly suggested that sulfur deficiency inhibited the synthesis of sulfur-containing compounds, leading to increased accumulation of pesticide residues and toxic metabolites as well as reduced detoxification capacity, consequently leading to oxidative damage to plants. Therefore, moderate sulfur supply in regions where neonicotinoid insecticides are intensively and indiscriminately used may be an efficient strategy to reduce pesticide residues and the potential risk to ecosystem.
اظهر المزيد [+] اقل [-]Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber
2020
Ahammed, Golam Jalal | Wang, Yaqi | Mao, Qi | Wu, Meijuan | Yan, Yaru | Ren, Jingjing | Wang, Xiaojuan | Liu, Airong | Chen, Shuangchen
Bisphenol A (BPA) is an emerging organic pollutant, widely distributed in environment. Plants can uptake and metabolize BPA, but BPA accumulation induces phytotoxicity. In this study, we administered dopamine, a kind of catecholamines with strong antioxidative potential, to unveil its role in cucumber tolerance to BPA stress. The results showed that exposure to BPA (20 mg L⁻¹) for 21 days significantly reduced growth and biomass accumulation in cucumber seedlings as revealed by decreased lengths and dry weights of shoots and roots. While BPA exposure decreased the chlorophyll content, cell viability and root activity, it remarkably increased reactive oxygen species (ROS) accumulation, electrolyte leakage and malondialdehyde (MDA) content, suggesting that BPA induced oxidative stress in cucumber. However, exogenous dopamine application significantly improved the photosynthetic pigment content, root cell viability, growth and biomass accumulation, and decreased the ROS and MDA levels by increasing the activity of antioxidant enzymes under BPA stress. Further analysis revealed that dopamine application significantly increased the glutathione content and the transcripts and activity of glutathione S-transferase under co-administration of dopamine and BPA compared with only BPA treatment. Moreover, dopamine decreased the BPA content in both leaves and roots, suggesting that dopamine promoted BPA metabolism by enhancing the glutathione-dependent detoxification. Our results show that dopamine has a positive role against BPA phytotoxicity and it may reduce the risks-associated with the dietary intake of BPA through consumption of vegetables.
اظهر المزيد [+] اقل [-]