خيارات البحث
النتائج 1 - 10 من 274
Direct injection green chromatographic method for simultaneous quantification of amoxicillin and amikacin in maternity hospital wastewater (Sagar, India) النص الكامل
2022
Sharma, Girraj | Pahade, Priyanka | Durgbanshi, Abhilasha | Carda-Broch, Samuel | Peris-Vicente, Juan | Bose, Devasish
Amoxicillin (AMO) and amikacin (AMK) are broad-spectrum antibiotics that are most preferably given post-delivery (normal and cesarian) in the maternity hospitals located in Sagar city (Madhya Pradesh), India. Both the antibiotics make their way through sewage/drainage systems into the environment in the form of metabolized and unmetabolized compounds. Growing concern about the contamination of wastewater by antibiotics requires fast, sensitive and eco-friendly techniques. Therefore a simple, rapid and environmental friendly chromatographic method has been developed for simultaneous determination of AMO and AMK in maternity hospital wastewater samples. A micellar liquid chromatographic (MLC) method was developed with a C₁₈ column (250 mm × 4.6 mm), sodium dodecyl sulphate (SDS; 0.15 M), 1-butanol (7%) as a modifier, pH 5 and photo diode detector (PDA) at 270 nm and 256 nm for AMO and AMK respectively. The method was fast with analysis time below 9 min. In the present MLC method, linearities (r > 0.998), limits of quantification in the range of 0.02–0.04 μg/mL, repeatabilities, and intermediate precision below 4.9% were adequate for the quantification of AMO and AMK. The proposed method can be utilized to detect and quantify both the antibiotics in various samples by hospitals, pharmaceutical companies, pollution control board, municipal corporations, etc.
اظهر المزيد [+] اقل [-]Riverine microplastics derived from mulch film in Hainan Island: Occurrence, source and fate النص الكامل
2022
Jiao, Meng | Wang, Yijin | Li, Tiezhu | Li, Ruilong | Liu, Beibei
Mulch film (MF) residues is an important source of microplastics (MPs) in farmland, but its transportation risk to the wider environment was still unknown. Some researches have pursued the sources of MPs found in exorheic rivers. Even so, a systematic study depicting the occurrence, source and fate of microplastics derived from mulch films (MPMF), the crucial component of MPs in farmlands, in exorheic rivers still lacking. Here, the combination of UV–Vis Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) was used to identify the full-size MPMF (1–5000 μm) in field sediment samples collected by single-diagonal systematic sampling. This study verified that MPMF, a polyethylene-matrix composite doped with additives, contributed a considerable part of MPs detected in upstream farmland soil and riverine sediments, and even had an abundance of 38 ± 11 items/kg to 82 ± 15 items/kg, accounting for 9.0%–13.7% of the total MPs in estuary sediments. Notably, upstream farmland was identified to the main source of the riverine MPMF by partial least square path modeling (PLS-PM), contributing to 94.7% of MPMF in riverside sediments and 85.0% of MPMF in estuary sediments. Our study first demonstrates that MPMF constitutes a non-negligible component of MPs in estuarine sediments and underlines the urgency of strengthening the management of MPs pollution in drainage areas with a high agricultural intensity.
اظهر المزيد [+] اقل [-]Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium النص الكامل
2022
He, Xian | Nkoh, Jackson Nkoh | Shi, Ren-yong | Xu, Ren-kou
To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.
اظهر المزيد [+] اقل [-]Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands النص الكامل
2022
Lin, Fei | Zuo, Hongchao | Ma, Xiaohong | Ma, Lei
European natural peatlands have undergone long-term anthropogenic drainage activities that have severely decreased their functions, such as carbon sequestration. Recent rewetting has been conducted to restore the ecosystem services of peatlands and mitigate the emissions of potent greenhouse gases such as nitrous oxide (N₂O). However, the magnitudes and spatial patterns of annual N₂O fluxes and their mitigation potentials across European peatlands remain unknown. Here, we synthesized 492 annual N₂O flux data points from 77 in situ studies across European peatlands and found that the soil annual N₂O fluxes varied extensively from −1.08 to 33.40 kg N₂O–N ha⁻¹ yr⁻¹; these results were significantly and interactively (P < 0.05) affected by the peatland status, climatic regime and nutrient supply type. Drainage significantly (P < 0.05) stimulated soil N₂O emissions from natural minerotrophic rather than ombrotrophic peatlands, regardless of the climatic regime. Similarly, rewetting significantly (P < 0.05) reduced soil N₂O emissions from drained minerotrophic rather than ombrotrophic peatlands, demonstrating that the high N₂O emissions were driven by a simultaneous decline in the water table depth and increase in the soil nitrogen (N) availability. Magnitudes of the increases or decreases in N₂O emissions due to drainage or rewetting were also significantly influenced by the land-use and drainage history before rewetting and in the years following drainage/rewetting, respectively. The estimated annual mean N₂O emission total was found to be 90.42 (95% confidence interval: 64.49–122.57) Gg N₂O–N in 2020 from European peatlands. Scenario analysis showed that drained peatlands should be rewetted expeditiously; postponing rewetting would cause larger emissions from continued N₂O emissions from drained peatlands. Fully rewetting the drained peatlands used for forestry and peat extraction and partially rewetting those used for agriculture and grassland comprise a strategy for mitigating drained peatland N₂O emissions without compromising food security.
اظهر المزيد [+] اقل [-]Eco-friendly yield-scaled global warming potential assists to determine the right rate of nitrogen in rice system: A systematic literature review النص الكامل
2021
Islam Bhuiyan, Mohammad Saiful | Rahamāna, Ājijura | Kim, Gil Won | Das, Suvendu | Kim, Pil Joo
Rice paddies are one of the largest greenhouse gases (GHGs) facilitators that are predominantly regulated by nitrogen (N) fertilization. Optimization of N uses based on the yield has been tried a long since, however, the improvement of the state-of-the-art technologies and the stiffness of global warming need to readjust N rate. Albeit, few individual studies started to, herein attempted as a systematic review to generalize the optimal N rate that minimizes global warming potential (GWP) concurrently provides sufficient yield in the rice system. To satisfy mounted food demand with inadequate land & less environmental impact, GHGs emissions are increasingly evaluated as yield-scaled basis. This systematic review (20 published studies consisting of 21 study sites and 190 observations) aimed to test the hypothesis that the lowest yield-scaled GWP would provide the minimum GWP of CH₄ and N₂O emissions from rice system at near optimal yields. Results revealed that there was a strong polynomial quadratic relationship between CH₄ emissions and N rate and strong positive correlation between N₂O emissions and N rate. Compared to control the low N dose emitted less (23%) CH₄ whereas high N dose emitted higher (63%) CH₄ emission. The highest N₂O emission observed at moderated N level. In total GWP, about 96% and 4%, GHG was emitted as CH₄ and N₂O, respectively. The mean GWP of CH₄ and N₂O emissions from rice was 5758 kg CO₂ eq ha⁻¹. The least yield-scaled GWP (0.7565 (kg CO₂ eq. ha⁻¹)) was recorded at 190 kg N ha⁻¹ that provided the near utmost yield. This dose could be a suitable dose in midseason drainage managed rice systems especially in tropical and subtropical climatic conditions. This yield-scaled GWP supports the concept of win–win for food security and environmental aspects through balancing between viable rice productivity and maintaining convincing greenhouse gases.
اظهر المزيد [+] اقل [-]Developmental toxicity in zebrafish (Danio rerio) exposed to uranium: A comparison with lead, cadmium, and iron النص الكامل
2021
Shankar, Prarthana | Dashner-Titus, Erica J. | Truong, Lisa | Hayward, Kimberly | Hudson, Laurie G. | Tanguay, Robyn L.
Populations of plants and animals, including humans, living in close proximity to abandoned uranium mine sites are vulnerable to uranium exposure through drainage into nearby waterways, soil accumulation, and blowing dust from surface soils. Little is known about how the environmental impact of uranium exposure alters the health of human populations in proximity to mine sites, so we used developmental zebrafish (Danio rerio) to investigate uranium toxicity. Fish are a sensitive target for modeling uranium toxicity, and previous studies report altered reproductive capacity, enhanced DNA damage, and gene expression changes in fish exposed to uranium. In our study, dechorionated zebrafish embryos were exposed to a concentration range of uranyl acetate (UA) from 0 to 3000 μg/L for body burden measurements and developmental toxicity assessments. Uranium was taken up in a concentration-dependent manner by 48 and 120 h post fertilization (hpf)-zebrafish without evidence of bioaccumulation. Exposure to UA was not associated with teratogenic outcomes or 24 hpf behavioral effects, but larvae at 120 hpf exhibited a significant hypoactive photomotor response associated with exposure to 3 μg/L UA which suggested potential neurotoxicity. To our knowledge, this is the first time that uranium has been associated with behavioral effects in an aquatic organism. These results were compared to potential metal co-contaminants using the same exposure paradigm. Similar to uranium exposure, lead, cadmium, and iron significantly altered neurobehavioral outcomes in 120-hpf zebrafish without inducing significant teratogenicity. Our study informs concerns about the potential impacts of developmental exposure to uranium on childhood neurobehavioral outcomes. This work also sets the stage for future, environmentally relevant metal mixture studies. Summary Uranium exposure to developing zebrafish causes hypoactive larval swimming behavior similar to the effect of other commonly occurring metals in uranium mine sites. This is the first time that uranium exposure has been associated with altered neurobehavioral effects in any aquatic organism.
اظهر المزيد [+] اقل [-]Behavior and distribution of polystyrene foams on the shore of Tuul River in Mongolia النص الكامل
2020
Battulga, Batdulam | Kawahigashi, Masayuki | Oyuntsetseg, Bolormaa
Foamed plastic debris in aquatic systems has become one of the emerging global contaminants. In this study, the behavior of polystyrene foam (PSF) and microplastics (MPs) adhered on the PSFs were investigated on the Tuul River shore in Ulaanbaatar, the capital city of Mongolia. The micro-sized (<5 mm) PSF, which was the dominant PSF over 600 pieces in 100 m², have accumulated along the shoreline of Tuul River. Carbonyl index (CI) was calculated to evaluate the surface oxidation of macro-sized (20–100 mm), meso-sized (5–20 mm), and micro-sized PSFs and confirm the relative aging depending on photodegradation. CI ranged from 0.00 to 1.09 in the sampled PSFs, whereby the degraded PSFs with high CI were distributed on the shore of downstream of sewer drainage. Micro-sized PSFs showed a wide range of CI and a relatively high average value of CI as compared to those of meso- and macro-sized PSFs. Most of PSFs aggregated with MPs and the adhered MPs have been ubiquitously detected from the surface of PSFs. Adhered micro-sized plastics explored from the surface of PSFs with various sizes, except for mega-sized (>100 mm) PSF, ranged from 5 to 141 items per piece of PSF fragment. The aggregates of PSFs and MPs were common status of PSFs during their transportation. The present findings, which indicated a high concentration of adhered MPs, raise an environmental concern about the widespread aquatic plastic pollution.
اظهر المزيد [+] اقل [-]Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics النص الكامل
2020
Tang, Xianqiang | Li, Rui | Hinton, William | Wu, Xingyi
Pore water is a crucial storage medium and a key source of sediment phosphorus. A novel equipment based on electrokinetic geosynthetics (EKGs) was used for isolating phosphorus from eutrophic lake sediments through pore water drainage. Three mutually independent indoor group experiments (A, B, and C) were conducted to investigate the effects of voltage gradient (0.00, 0.25, and 0.50 V/cm) on pore water drainage capacity, phosphorus removal performance, sediment physicochemical properties, and phosphorus storage dynamics. The average reduction in the sediment moisture and total phosphorus content was 2.5%, 4.3%, and 4.6% and 28.15, 75.95, and 112.65 mg/kg after 6 days of treatment for A, B and C, respectively. Efficient pore water drainage through gravity and electroosmotic flow and electromigration of phosphate were the main drivers of sediment-dissolved and mobilized phosphorus separation. A high voltage gradient facilitated the migration of pore water and the phosphorus in it. The maximal effluent total phosphorous (TP) concentration was up to 27.9 times that in the initial pore water samples, and negligible effluent TP was detected when the pore water pH was less than 2.5. The TP concentration was exponentially and linearly related to the pH and electronic conductivity of the electroosmotic flow, respectively. The migration of H⁺ within the sediment matrix promoted the liberation of metals bounded to phosphorus, particularly of Ca–P and Fe–P. Pore water drainage through an EKG resulted in Ex–P separation of up to 87.50% and a 13.84 mg/kg decrease in Ca–P and 125.35 mg/kg accumulation of low mobile Fe–P in the weak acid anode zone.
اظهر المزيد [+] اقل [-]Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils النص الكامل
2020
Syu, Chien-Hui | Yu, Chih-Han | Lee, Dar-Yuan
Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO₂), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO₂ kg⁻¹. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO₂ application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25–45% upon CaO₂ treatment of low-As-level soils (<16 mg kg⁻¹). However, the effect of CaO₂ application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg⁻¹) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO₂ amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO₂ application method is not feasible.
اظهر المزيد [+] اقل [-]Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco) النص الكامل
2019
Zouhri, Lahcen | El Amari, Khalid | Marier, David | Benkaddour, Abdelfattah | Hibti, Mohamed
Waste water of the Kettara village, as well as the abandoned tailings, constitute a potential environmental issue with direct consequences on air, soil, water resources qualities and, on human health. In this paper, experimental investigations examine the environmental impact which is induced by the wastewater, mine tailings and the lithological factors of rocks. This multidisciplinary research allows to i) understand the transfer of the Metallic Trace Elements (selenium, arsenic, nickel and zinc) and sulfate ions in the fractured shales media, ii) to assess the water potability by using the microbiological analysis. The microbiological results reveal the domestic impact by the presence of several kinds of bacteria in the groundwater resources: E. coli, Fecal coliforms, Total coliforms, Enterococci, Mesophilic Aerobic Flora, Sulphite-reducing bacteria and Salmonella.Selenium, arsenic and the bacteriological contamination of the groundwater could be explained by five kinds of factors: i) the geological formations and the nature of the hydrogeological system (unconfined layer), ii) the groundwater flow, the hydraulic relation between the hydrogeological wells and, the fractures network in the shale aquifer. The piezometric map allows to highlight the groundwater flow from the North-East to North-West and to the South-West, the drainage axis towards the P21 well and the presence of the dividing axis in the contaminated zone by the arsenic, iii) the absence of the unhealthy habitats with permeable traditional septic tanks in the village; iv) the transfer of the spreading animal excrements from the soil to groundwater and, v) the migration of the wastewater towards downstream of the groundwater flow. The presence of the reed beds could explain the reduction of bacteria in the hydrogeological wells of the study area.
اظهر المزيد [+] اقل [-]