خيارات البحث
النتائج 1 - 4 من 4
Artificial light reduces foraging opportunities in wild least horseshoe bats
2021
Luo, Bo | Xu, Rong | Li, Yunchun | Zhou, Wenyu | Wang, Weiwei | Gao, Huimin | Wang, Zhen | Deng, Yingchun | Liu, Ying | Feng, Jiang
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0–15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
اظهر المزيد [+] اقل [-]Traffic noise playback reduces the activity and feeding behaviour of free-living bats
2020
Finch, Domhnall | Schofield, Henry | Mathews, Fiona
Increasing levels of road noise are creating new anthropogenic soundscapes that may affect wildlife globally. Bats, which form about a third of all mammal species, are sensitive bioindicators, and may be particularly vulnerable because of their dependency on echolocation. Here we present the first controlled field experiment with free-living bats. Using a Before-After-Control-Impact phantom road experimental design, we examine the impacts of traffic noise on their activity and feeding behaviour. Disentangling the impacts of traffic noise from other co-varying exposures such as habitat quality, the experiment demonstrates a significant negative effect on the activity of each of the five, ecologically different, species (genus for Myotis spp.) examined. This suggests that the results are widely applicable. The negative effects are largely attributable to noise in the sonic spectrum, which elicited aversive responses in all bat species tested,whereas responses to ultrasoundwere restricted to a single species. Our findings demonstrate that traffic noise can affect bat activity at least 20m away from the noise source. For Pipistrellus pipistrellus and Pipistrellus pygmaeus, feeding behaviour, as well as overall activity, was negatively affected. Ecological Impact Assessments are therfore needed wherever there are significant increases in traffic flow, and not just when new roads are built. Further research is required to identify effective mitigation strategies, to delineate the zone of influence of road noise, and to assess whether there is any habituation over time.
اظهر المزيد [+] اقل [-]Seasonal and diel patterns in cetacean use and foraging at a potential marine renewable energy site
2018
Nuuttila, Hanna K. | Bertelli, Chiara M. | Mendzil, Anouska | Dearle, Nessa
Marine renewable energy (MRE) developments often coincide with sites frequented by small cetaceans. To understand habitat use and assess potential impact from development, echolocation clicks were recorded with acoustic click loggers (C-PODs) in Swansea Bay, Wales (UK). General Additive Models (GAMs) were applied to assess the effects of covariates including month, hour, tidal range and temperature. Analysis of inter-click intervals allowed the identification of potential foraging events as well as patterns of presence and absence. Data revealed year-round presence of porpoise, with distinct seasonal and diel patterns. Occasional acoustic encounters of dolphins were also recorded. This study provides further evidence of the need for assessing temporal trends in cetacean presence and habitat use in areas considered for development. These findings could assist MRE companies to monitor and mitigate against disturbance from construction, operation and decommissioning activities by avoiding times when porpoise presence and foraging activity is highest in the area.
اظهر المزيد [+] اقل [-]Impact of pile-driving on Hector's dolphin in Lyttelton Harbour, New Zealand
2019
Leunissen, Eva M. | Rayment, William J. | Dawson, Stephen M.
Several dolphin species occur close inshore and in harbours, where underwater noise generated by pile-driving used in wharf construction may constitute an important impact. Such impacts are likely to be greatest on species such as the endangered Hector's dolphin (Cephalorhynchus hectori), which has small home ranges and uses this habitat type routinely. Using automated echolocation detectors in Lyttelton Harbour (New Zealand), we studied the distribution of Hector's dolphins using a gradient sampling design over 92 days within which pile-driving occurred on 46 days. During piling operations, dolphin positive minutes per day decreased at the detector closest to the piling but increased at the mid-harbour detector. Finer-grained analyses showed that close to the piling operation, detections decreased with increasing sound exposure level, that longer piling events were associated with longer reductions in detections, and that effects were long-lasting - detection rates took up to 83 h to return to pre-piling levels.
اظهر المزيد [+] اقل [-]