خيارات البحث
النتائج 1 - 10 من 89
Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos النص الكامل
2024
Liu, Lulu | Wang, Fengzhong | Zhang, Zhong | Fan, Bei | Luo, Ying | Li, Ling | Zhang, Yifan | Yan, Zhihui | Kong, Zhiqiang | Francis, Frédéric | Li, Minmin
peer reviewed | Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L−1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life. © 2024 Elsevier Ltd
اظهر المزيد [+] اقل [-]Acute and developmental toxic effects of mono-halogenated and halomethyl naphthalenes on zebrafish (Danio rerio) embryos: Cardiac malformation after 2-bromomethyl naphthalene exposure النص الكامل
2022
Park, Jungeun | Kim, Yurim | Jeon, Hwang-Ju | Kim, Kyeongnam | Kim, Chaeeun | Lee, Seungki | Son, Jino | Lee, Sung-Eun
Polyhalogenated polycyclic aromatic hydrocarbons (HPAHs) represent a major environmental concern due to their persistency and toxicity. Among them, mono-halogenated (HNs) and halomethyl naphthalenes (HMNs) are not well-studied, and the toxicity of many HNs to fishes has not been reported. In this study, we exposed zebrafish (Danio rerio) embryos to naphthalene and five HNs at concentrations ranging from 0.25 to 2.0 mg L⁻¹ to assess acute toxicities and developmental effects. Among them, 2-bromomethyl naphthalene (2-BMN) produced moderate lethal effects (96-h LC₅₀ = 1.4 mg L⁻¹) and significantly reduced hatchability. Abnormal phenotypes, including pericardial edema, spine curvature, and shortened body length, were also induced by 2-BMN (96-h EC₅₀ = 0.45 mg L⁻¹). Treatments of 0.5–2.0 mg L⁻¹ 2-BMN evoked cardiac malformations via significant down-regulation of the cacna1c gene, which codes the voltage-dependent calcium channel, at 72 hpf and up-regulation of the nppa gene, responsible for the expression of natriuretic peptides, at 96 hpf in zebrafish. One presumable toxic photo-dissociated metabolite of 2-BMN, the 2-naphthylmethyl radical, may be responsible for the toxic effect on zebrafish embryos. HPAHs must be monitored and managed due to their adverse effects on living organisms at low concentrations.
اظهر المزيد [+] اقل [-]Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines النص الكامل
2021
Kim, Chaeeun | Choe, Hyeseung | Park, Jungeun | Kim, Gayoung | Kim, Kyeongnam | Jeon, Hwang-Ju | Moon, Joon-Kwan | Kim, Myoung-Jin | Lee, Sung-Eun
Azoxystrobin (AZ) and pyraclostrobin (PY) are strobilurin fungicides that inhibit fungal mitochondrial respiration. In this study, a representative model, zebrafish (Danio rerio), was used as a test species for acute and developmental toxicity. Survival and malformation rates were observed only PY-treated embryos, with an LC₅₀ value of 77.75 ppb accompanied by a dramatic decrease in hatching rate, while AZ did not show great mortality. Morphological changes were observed in PY-treated embryos with the occurrence of pericadial edema at 25 ppb. A delay in growth was observed after treatment with pyraclostrobin at 50 ppb. Use of genetically engineered Tg(cmlc:EGFP) allowed fluorescence observation during heart development. PY interfered with normal heart development via upregulation of the nppa gene responsible for the expression of natriuretic peptides. Heart function was dramatically reduced as indicated by reduced heart rates. Increased expression of the nppa gene was also seen in AZ-treated embryos. The expression level of cyp24a1 was also up-regulated, while ugt1a1 and sult1st6 were down-regulated after treatment of zebrafish embryos with AZ or PY. Overall, strobilurin fungicides might inhibit normal heart formation and function within the range of concentrations tested.
اظهر المزيد [+] اقل [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
اظهر المزيد [+] اقل [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M. | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies. | This study was made possible by financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT, Project 300727). | Peer reviewed
اظهر المزيد [+] اقل [-]New insights into cardiotoxicity induced by chiral fluoxetine at environmental-level: Enantioselective arrhythmia in developmental zebrafish (Danio rerio) النص الكامل
2021
Chai, Tingting | Cui, Feng | Di, Shanshan | Wu, Shenggan | Zhang, Yiming | Wang, Xinquan
Fluoxetine is frequently detected in aquatic environment, and chronic FLX exposure exhibits adverse effects on aquatic communities. Its chirality makes the adverse effects more complicated. This study aimed at the enantioselective cardiotoxicity in developmental zebrafish induced by racemic (rac-)/S-/R-fluoxetine. The accumulation profiles demonstrated that biotransformation of fluoxetine to norfluoxetine occurred during rac-fluoxetine exposure, with a higher enrichment of S-norfluoxetine than R-norfluoxetine. Heart malformations including pericardial edema, circulation abnormalities, and thrombosis were observed, and enantioselective changes also occurred. According to H&E staining and Masson’s trichrome staining, the loose severity of cardiac structure and cardiac fibrosis in rac-norfluoxetine treated group was worse than that in fluoxetine treated groups. Results of toxicity-associated parameters in our homochiral enantiomers’ exposure also indicated that the toxicity induced by S-fluoxetine was more severe than R-fluoxetine. Enantioselective arrhythmia in developmental zebrafish after chiral fluoxetine exposure could be caused by myocardial fibrosis, abnormal developmental processes, and the biotransformation of fluoxetine to norfluoxetine could make that worse. Our findings can be used to assess the environmental risk of the two enantiomers of fluoxetine that induce cardiotoxicity in aquatic organisms.
اظهر المزيد [+] اقل [-]Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology النص الكامل
2021
de Oliveira Klein, Mariana | Serrano, Sergio V. | Santos-Neto, Álvaro | da Cruz, Claudinei | Brunetti, Isabella Alves | Lebre, Daniel | Gimenez, Maíse Pastore | Reis, Rui M. | Silveira, Henrique C.S.
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH₂-F) and 2′-deoxy-2′,2′-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: <LOQ (above 1400 ng L⁻¹) and CP: <LOQ (above 300 ng L⁻¹), and GEM was quantified at 420 ng L⁻¹. Furthermore, 2-DOH-DiF (116,000 ng L⁻¹) was detected at the highest level in the hospital wastewater. There were no zebrafish deaths at any of the concentrations of the compounds used. However, we observed histological changes, including aneurysms and edema in the gills and areas of necrosis of the liver. In summary, we found higher concentrations of CP, GEM and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected for the first time. There is currently no legislation regarding the discharge of anti-cancer drugs in effluents in Brazil. This study is first to focus on effluents from specific treatments from a large cancer hospital located in small city in Brazil.
اظهر المزيد [+] اقل [-]Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: Multi-level endpoint and proteomics analysis النص الكامل
2021
Chatterjee, Nivedita | Lee, Hyunho | Kim, Jiwan | Kim, Doeun | Lee, Sangkyu | Choi, Jinhee
Systemic toxicity, particularly, developmental defects of humidifier disinfectant chemicals that have caused lung injuries in Korean children, remains to be elucidated. This study evaluated the mechanisms of the adverse effects of 5-chloro-2-methyl-4-isothiazoline-3-one/2methyl-4-isothiazolin-3-one (CMIT/MIT), one of the main biocides of the Korean tragedy, and identify the most susceptible developmental stage when exposed in early life. To this end, the study was designed to analyze several endpoints (morphology, heart rate, behavior, global DNA methylation, gene expressions of DNA methyl-transferases (dnmts) and protein profiling) in exposed zebrafish (Danio rerio) embryos at various developmental stages. The results showed that CMIT/MIT exposure causes bent tail, pericardial edema, altered heart rates, global DNA hypermethylation and significant alterations in the locomotion behavior. Consistent with the morphological and physiological endpoints, proteomics profiling with bioinformatics analysis suggested that the suppression of cardiac muscle contractions and energy metabolism (oxidative phosphorylation) were possible pivotal underlying mechanisms of the CMIT/MIT mediated adverse effects. Briefly, multi-level endpoint analysis indicated the most susceptible window of exposure to be ≤ 6 hpf followed by ≤ 48 hpf for CMIT/MIT. These results could potentially be translated to a risk assessment of the developmental exposure effects to the humidifier disinfectants.
اظهر المزيد [+] اقل [-]Microcystin-LR exposure decreased the fetal weight of mice by disturbance of placental development and ROS-mediated endoplasmic reticulum stress in the placenta النص الكامل
2020
Zhao, Sujuan | Zhong, Shengzheng | Wang, Fang | Wang, Honghui | Xu, Dexiang | Li, Guangyu
The placenta is essential for sustaining the growth of the fetus. The aim of this study was to investigate the role of the placenta in MCLR-induced significant reduction in fetal weight, especially the changes in placental structure and function. Pregnant mice were intraperitoneally injected with MCLR (5 or 20 μg/kg) from gestational day (GD) 13 to GD17. The results showed MCLR reduced fetal weight and placenta weight. The histological specimens of the placentas were taken for light and electron microscopy studies. The internal space of blood vessels decreased obviously in the placental labyrinth layer of mice treated with MCLR. After the ultrastructural examination, the edema and intracytoplasmic vacuolization, dilation of the endoplasmic reticulum and corrugation of the nucleus were observed. In addition, maternal MCLR exposure caused a reduction of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) expression in placentae, a critical regulator of fetal development. Several genes of placental growth factors, such as Vegfα and Pgf and several genes of nutrient transport pumps, such as Glut1 and Pcft were depressed in placentas of MCLR-treated mice, however nutrient transporters Fatp1 and Snat4 were promoted. Moreover, significant increases in malondialdehyde (MDA) revealed the occurrence of oxidative stress caused by MCLR, which was also verified by remarkable decrease in the glutathione levels, total antioxidant capacity (T-AOC) as well as the activity of antioxidant enzymes. Real-time PCR and western blot analysis revealed that GRP78, CHOP, XBP-1, peIF2α and pIRE1 were remarkable increased in placentas of MCLR-treated mice, indicating that endoplasmic reticulum (ER) stress pathway was activated by MCLR. Furthermore, oxidative stress and ER stress consequently triggered apoptosis which contributed to the impairment of placental development. Collectively, these results suggest maternal MCLR exposure results in reduced fetal body weight, which might be associated with ROS-mediated endoplasmic reticulum stress and impairment in placental structure and function.
اظهر المزيد [+] اقل [-]Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos النص الكامل
2020
Cao, Zigang | Huang, Yong | Xiao, Juhua | Cao, Hao | Peng, Yuyang | Chen, Zhiyong | Liu, Fasheng | Wang, Honglei | Liao, Xinjun | Lu, Huiqiang
Diclofop-methyl (DM) is one of the most widely used herbicides in agriculture production and has been frequently detected in both freshwater and environments, even agricultural products. However, the potential toxic effects of DM on organisms and the underlying mechanisms are still poorly understood. In this study, we utilized zebrafish to evaluate the toxicity of DM during the cardiovascular developmental process. Exposure of zebrafish embryos to 0.75, 1.0 and 1.25 mg/L DM induced cardiac defects, such as pericardial edema, slow heart rate and long SV-BA distance but the vascular development in zebrafish larvae was not influenced by DM treatment. The expression of cardiac-related genes were disordered and DM exposure initiated disordering cardiogenesis from the period of precardiac mesoderm formation. Moreover, the apoptosis and proliferation of cardiomyocytes were not influenced but the levels of oxidative stress were upregulated by DM exposure. Fullerenes and astaxanthin was able to rescue cardiac defects caused by DM via downregulating oxidative stress. Wnt signaling was downregulated after DM treatment and activation of Wnt signaling could rescue cardiac defects. Therefore, our results suggest that DM has the potential to induce cardiac developmental toxicity through upregulation of Wnt-Mediated (reactive oxygen species) ROS generation in zebrafish larvae.
اظهر المزيد [+] اقل [-]Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma النص الكامل
2018
Lee, Changkeun | Kwon, Bong-Oh | Hong, Seongjin | Noh, Junsung | Lee, Junghyun | Ryu, Jongseong | Kang, Seong-Gil | Khim, Jong Seong
The potential leakage from marine CO2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0–4 d (early stage), 4–8 d (middle stage), and 8–12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems.
اظهر المزيد [+] اقل [-]