خيارات البحث
النتائج 1 - 10 من 30
Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation
2020
Wang, Gang | Han, Neng | Liu, Li | Ke, Zhengchen | Li, Baoguo | Chen, Guowei
Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 10⁶ electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S. oneidensis MR-1 with nearly doubled maximum specific growth rate, albeit with clearly increased lag time, as compared with that of none-roxarsone scenario. These findings provide, at the first time, basic biostoichiometry of S. oneidensis MR-1 induced roxarsone biotransformation, which may shed lights for full understanding of roxarsone transformation process in waste treatment systems that are necessary for engineering practice and/or environmental risks assessment.
اظهر المزيد [+] اقل [-]Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India
2021
Surinaidu, L. | Nandan, M.J. | Sahadevan, D.K. | Umamaheswari, A. | Tiwari, V.M.
Perennial contaminated groundwater seepage is threatening the downstream ecosystem of the Kazipally Pharmaceutical industrial area located in South India. The sources of seepage are unknown for the last three decades that challenging the regulatory authorities and industries. In general, water quality monitoring and geophysical techniques are applied to identify the sources. However, these techniques may lead to ambiguous results and fail to identify the seepage sources, especially when the area is urbanized/paved, and groundwater is already contaminated with other leakage sources that have similar chemical compounds. In the present study, a novel and multidisciplinary approach were adopted that includes satellite-based Land Surface Temperature (LST) observations, field-based Electrical Resistivity Tomography (ERT), continuous Soil Electrical Conductivity (SEC) and Volumetric Soil Moisture (VSM%) measurements along with groundwater levels monitoring to identify the sources and to control the seepage. The integrated results identified that the locations with the Standard Thermal Anomaly (STA) in the range of −0.5 to -1 °C, VSM% >50%, SEC > 1.5 mS/cm, bulk resistivity < 12 Ω m with shallow groundwater levels < 3 m below ground level (bgl) are potentially contaminated perennial seepage sources. Impermeable sheet piles have been installed across the groundwater flow direction to control the seepage up to 1.5 m bgl, where groundwater frequently intercepts land surface. The quantity of dry season groundwater seepage has been declined by 79.2% after these interventions, which in turn minimized the treatment cost of 1,96,283 USD/year and improved the downstream ecosystem.
اظهر المزيد [+] اقل [-]Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
اظهر المزيد [+] اقل [-]Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells
2019
Kim, Nahyun | Han, Doo Hee | Suh, Myung-Whan | Lee, Jun-Ho | Oh, Seung-Ha | Park, Moo Kyun
Tight junctions (TJs) in the epithelium play a critical role in the formation of a paracellular epithelial barrier against the extracellular environment. Diesel exhaust particles (DEPs) disrupt the epithelial barrier. The aim of this study was to investigate how DEPs disrupt the epithelial barrier and whether Toll-like receptor 4 (TLR4) is involved in DEP-induced epithelial barrier dysfunction in primary human nasal epithelial (PHNE) cells.PHNE cells were cultured at an air–liquid interface (ALI) to create a fully differentiated in vivo-like model of the epithelium and then exposed to DEPs (particulate matter <4 μm) or lipopolysaccharide (LPS) alone (mono-exposure) and DEPs plus LPS (co-exposure) at the apical side of the PHNE. TJ formation and integrity were monitored by measuring transepithelial electric resistance (TEER) and fluorescently labeled dextran permeability. The expression of TJ proteins was assessed by confocal microscopy and a biochemical assay.PHNE cell viability was reduced in a time- and dose-dependent manner following DEP exposure. TEER was significantly decreased at ALI day 20 but not at day 12 following DEP exposure. The dextran permeability of the PHNE was significantly increased at both ALI day 12 and day 20 following DEP exposure. The increased dextran permeability recovered to that of the control following co-exposure to DEPs plus LPS. In the presence of DEPs, the membrane expression of myosin light chain kinase (MLCK) was dramatically increased, and the expression of occludin, ZO1, claudin-1, and E-cadherin was significantly decreased. Co-exposure to DEPs plus LPS significantly reduced membrane MLCK, claudin-1, and E-cadherin but increased occludin and ZO1 expression at ALI day 12.The activation of TLR4 by LPS inhibits MLCK trafficking to the plasma membrane, and this increased during DEP exposure, resulting in increased occludin expression at the plasma membrane that partially recovered TJ barrier dysfunction following DEP exposure.
اظهر المزيد [+] اقل [-]OTA induces intestinal epithelial barrier dysfunction and tight junction disruption in IPEC-J2 cells through ROS/Ca2+-mediated MLCK activation
2018
Wang, Hong | Zhai, Nianhui | Chen, Ying | Fu, Chongyang | Huang, Kehe
Ochratoxin A (OTA) is a frequent contaminant of feed and food worldwide. The toxicity of OTA on intestinal barrier was investigated in porcine intestinal epithelial cells (IPEC-J2). We observed that OTA induced intestinal barrier dysfunction as indicated by the reduction in transepithelial electrical resistance (TEER) and elevation in paracellular permeability to 4 kDa dextran. The barrier dysfunction was accompanied with tight junction disruption including a down-regulation in ZO-1 expression and redistribution of Occludin and ZO-1. Moreover, OTA exposure increased reactive oxygen species (ROS) generation, elevated the intracellular calcium level ([Ca²⁺]c) and activated myosin light chain kinase (MLCK). Simultaneously, NAC, a ROS scavenger, blocked OTA-induced ROS generation, [Ca²⁺]c elevation, barrier dysfunction and tight junction disruption, suggesting that OTA-induced ROS generation may act as a trigger. Next, we found that OTA-induced MLCK activation was inhibited by BAPTA-AM, the cytosolic Ca²⁺ chelator, demonstrating that OTA-induced MLCK activation is dependent on [Ca²⁺]c elevation. Furthermore, inhibition of MLCK with ML-7 or inhibition of [Ca²⁺]c elevation with BAPTA-AM markedly prevented OTA-induced barrier dysfunction and tight junction disruption. Taken together, our results indicated that OTA induces ROS generation, and then elevates the [Ca²⁺]c and MLCK activity in turn, which finally induces barrier dysfunction and disrupts tight junction in IPEC-J2 cell monolayers.
اظهر المزيد [+] اقل [-]Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, Northwestern Philippines
2011
Senal, Maria Isabel S. | Jacinto, Gil S. | San Diego-McGlone, Maria Lourdes | Siringan, Fernando | Zamora, Peter | Soria, Lea | Cardenas, M Bayani | Villanoy, Cesar | Cabrera, Olivia
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, ²²²Rn, and nutrient concentration measurements. Nitrate levels as high as 126μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN=NO₃+NO₂+NH₄) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2mmolesm⁻²d⁻¹, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.
اظهر المزيد [+] اقل [-]An in vitro bioassay to assess the potential global toxicity of waters on spermatogenesis: a pilot study
2021
Blondet, Antonine | Martin, Guillaume | Paulic, Laurent | Perrard, Marie-Hélène | Durand, Philippe
Many toxicants are present in water as a mixture. Male infertility is one of the environmental impacts in developed countries. Using our rat seminiferous tubule culture model, we evaluated the effects of waters of different origins, on several parameters of the seminiferous epithelium. Concentrated culture medium was diluted with the waters to be tested (final concentrations of the tested waters were between 8 and 80%). The integrity of the blood-testis barrier was assessed by the trans-epithelial electric resistance (TEER). The levels of mRNAs specific of Sertoli cells, of cellular junctions, of each population of germ cells, of androgen receptor, of estrogen receptor α, and of aromatase were also studied. We report, here, the results obtained with ten waters, some of them possessing a negative effect on spermatogenesis. The results showed that, according to the tested waters, their effects on the parameters studied might be quite different indicating many different mechanisms of toxicity, including some endocrine-disrupting effects. It has been reported that men with impaired semen parameters have an increased mortality rate suggesting semen quality may provide a fundamental biomarker of overall male health. Hence, we have developed a relevant in vitro bioassay allowing the evaluation of the potential toxicity of different types of waters on male fertility and to assess some aspects of their mechanism of action. In addition to the TEER measure, the number and/or the identity of the studied mRNAs can be largely increased and/or modified, thus enhancing the possibility of using this model as a “warning system.”
اظهر المزيد [+] اقل [-]Integrated Hydrological and Geophysical Characterisation of Surface and Subsurface Water Contamination at Abandoned Metal Mines
2018
Hudson, Emily | Kulessa, Bernd | Edwards, Paul | Williams, Tom | Walsh, Rory
The mining and processing of metal ores in the UK has left a legacy of environmental degradation, and abandoned metal mines still pose a significant threat to terrestrial and fluvial environments. Flow gauging, water quality and geophysics were combined in an integrated assessment of surface and subsurface hydrological contamination at Esgair Mwyn, an abandoned mine in Ceredigion, Wales. Heavy metals discharged from the site are polluting downstream watercourses, leading to widespread Environmental Quality Standards (EQS) compliance failures. Through salt water dilution gauging and water quality sampling, a daily efflux of 876 g of heavy metals was calculated, with contaminant mobilisation occurring mainly in two primary surface streams draining an exposed tailings heap. Electrical resistivity tomography subsurface imaging found a seepage plane within the tailings lagoon wall, whilst the main tailings heap became increasingly saturated with depth. A large adjacent field also had a high potential to convey pollutants in solution, yet its morphological characteristics have limited transmission, as the area acts as a passive treatment type system. With remediation of already polluted water both difficult and expensive, this approach provides a cost-effective way to identify the origins and pathways of contaminants, informing mitigation strategies focussed on containment. Esgair Mwyn is not an isolated case, as abandoned metal mines release at least 860 t of heavy metals annually into UK water bodies. These techniques could reduce or prevent abandoned metal mine hydrological pollution for decades to come, and enable associated UK water bodies to comply with future water quality standards.
اظهر المزيد [+] اقل [-]In Vitro Studies on Atrazine Effects on Human Intestinal Cells
2010
Olejnik, Anna M. | Marecik, Roman | Białas, Wojciech | Cyplik, Paweł | Grajek, Włodzimierz
Considering the importance of the oral route for human exposure to atrazine, we have investigated the possible effect of this herbicide on the human intestinal cells and the integrity of the epithelial barrier, using Caco-2 cells as the intestinal model in vitro. We evaluated possibile cytotoxic and genotoxic effects of atrazine in concentrations ranging from 1 to 250 μM on the Caco-2 cells at different stages of growth after short- and long-term exposure. Results from the tetrazolium blue (MTT) test and the Trypan blue exclusion assay showed that atrazine cytotoxicity was dose- and time-dependent. Obtained data indicated that atrazine at high concentrations (50 and 250 μM) was able to induce effects on Caco-2 proliferation and viability. Moreover, it was found that the long-term exposure to atrazine at the non-cytotoxic dose caused inhibition of the intestinal cell maturation and decreased the transepithelial electrical resistance, the indicator of the epithelial barrier integrity. Studies on the atrazine genotoxicity determined using the single cell microelectrophoresis assay indicated that atrazine did not induce DNA damages in the Caco-2 cells at concentrations of up to 50 μM, whereas enhancement in the DNA damage was observed at 250 μM. Altogether, our results indicate that atrazine at expected human oral exposure concentrations is not able to induce effects on the Caco-2 cell proliferation and viability, but may suppress the intestinal cell differentiation and reduce the cell monolayer integrity. We suggest that chronic exposure on low levels of atrazine may lead to alteration in the expression of the morphological and functional features of the Caco-2 cells related to the transport and barrier function of small intestinal enterocytes. In consequence, this may lead to alterations in the intestinal absorption process.
اظهر المزيد [+] اقل [-]Evaluating salinity variation and origin in coastal aquifer systems with integrated geophysical and hydrochemical approaches
2022
Wang, Peng | Zhang, Xiaoying | Hao, Yanru | Li, Dan
Public concerns have been dramatically increased over potential saltwater intrusion resulting in freshwater resources shortage in coastal aquifers in the past decades. Investigating the distribution and origin of saline water is a key factor to understand coastal groundwater evolution and further assist its management. Here we evaluate the horizontal and vertical spatial variability of the coastal groundwater salinity and its potential key influencing factors based on integrated hydrochemical and geoelectrical approaches in the Pearl River Estuary (PRE), South China. The electrical resistivity tomography and geochemical data show a decrease of salinity from the coast to the inland with a water type varying from Cl–Na to HCO₃–Ca at the regional scale. Points with higher/lower salinity values than those in the surrounding environment occasionally exist in the study region. In the cross section, the zone 2–90 m below the surface has low resistivity values, which correspond to high-salinity values in the subsurface. The moderate resistivity values at 0–2 m depth illustrate an infiltration of freshwater. The complex salinity distribution pattern is mainly controlled by the heterogeneity of formation and distribution of primary flow paths, while the coastal groundwater salinity evolution is shaped by the joint influence of paleo-seawater intrusion, the ion mixing processes, and the water–rock interaction.
اظهر المزيد [+] اقل [-]