خيارات البحث
النتائج 1 - 10 من 355
Monitoring of glyphosate-DNA interaction and synergistic genotoxic effect of glyphosate and 2,4-dichlorophenoxyacetic acid using an electrochemical biosensor النص الكامل
2021
Congur, Gulsah
Glyphosate (GLY) is a broad-spectrum herbicide used worldwide to control broadleaf sedge, and grass weeds to control non-specific vegetation. Although it was evaluated as non-toxic agent in 20ᵗʰ century, its carcinogenic and genotoxic potential has being intensively investigated all over the world in the last decade. Moreover, the combination of GLY and 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely applied. Although genotoxicity of GLY has been evaluated in vivo studies, there is no report in the literature for the monitoring of in vitro biointeraction of GLY and double stranded DNA, or how effect the combination of GLY and 2,4-D onto DNA. Herein, an electrochemical biosensor platform was developed for detection of the pesticide-DNA interaction by using disposable pencil graphite electrodes (PGEs). First, voltammetric detection of the interaction between GLY and DNA was investigated and the electrochemical characterization of the interaction was achieved. Taking a step further, the synergistic genotoxic effect of the mixture of GLY and 2,4-dichlorophenoxyacetic acid (2,4-D) or the mixture of their herbicide forms onto DNA could be monitored. This effect was concentration dependent, and the herbicide of GLY or the use of mixture of herbicides of GLY and 2,4-D had more genotoxic effect than analytical grade of the active molecules, GLY and 2,4-D. The single-use PGEs provided to fabricate robust, eco-friendly and time saver recognition platform for monitoring of herbicide-DNA interaction with the sensitive and reliable results. It is expected that this study will lead to be designed miniaturized lab-on-a chip platforms for on-line analysis of the pesticide-nucleic acid interactions.
اظهر المزيد [+] اقل [-]Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis النص الكامل
2021
Cui, Yin Hua | Shi, Qing Shan | Zhang, Dan Dan | Wang, Lingling | Feng, Jin | Chen, Yi-Wen | Xie, Xiao Bao
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
اظهر المزيد [+] اقل [-]Iron-carbon material enhanced electrokinetic remediation of PCBs-contaminated soil النص الكامل
2021
Song, Yan | Lei, Cheng | Yang, Kun | Lin, Daohui
The high toxicity and persistence of polychlorinated biphenyls (PCBs) in the environment demands the development of effective remediation for PCBs-contaminated soils. In this study, electrokinetic (EK) remediation integrated with iron-carbon material (Fe/C) was established and used to remediate PCB28 (1 mg kg⁻¹) contaminated soil under a voltage gradient of 1 V cm⁻¹. Effects of Fe/C dosage, soil type, and remediation time were investigated. The operational condition was optimized as 4 g kg⁻¹ Fe/C, yellow soil, and 14 d-remediation, achieving PCB28 removal efficiency of 58.6 ± 8.8% and energy utilization efficiency of 146.5. Introduction of EK-Fe/C did not significantly affect soil properties except for slight soil moisture content increase and total Fe content loss. Soil electrical conductivity exhibited an increasing trend from anode to cathode attributed to EK-induced electromigration and electroosmosis. EK accelerated the corrosion and consumption of reactive Fe⁰/Fe₃C in Fe/C by generating acid condition. Fe/C in turn effectively prevented EK-induced soil acidification and maintained soil neutral to weak alkaline condition. A synergistic effect between EK and Fe/C was revealed by the order of PCB28 removal efficiency-EK-Fe/C (58.6 ± 8.8%) > EK (37.7 ± 1.6%) > Fe/C (6.8 ± 5.0%). This could be primarily attributed to EK and Fe/C enhanced Fenton reaction, where EK promoted Fe/C dissolution and H₂O₂ generation. In addition to oxidation by Fenton reaction generated ·OH, EK-mediated electrochemical oxidation, Fe/C-induced reduction and migration of Fe/C adsorbed PCBs were all significant contributors to PCB28 removal in the EK-Fe/C system. These findings suggest that the combination of EK and Fe/C is a promising technology for remediation of organics-contaminated soil.
اظهر المزيد [+] اقل [-]Characterization of crude oil degrading bacterial communities and their impact on biofilm formation النص الكامل
2021
Elumalai, Punniyakotti | Parthipan, Punniyakotti | AlSalhi, Mohamad S. | Huang, Mingzhi | Devanesan, Sandhanasamy | Karthikeyan, Obulisami Parthiba | Kim, Woong | Rajasekar, Aruliah
In the present study, produced water sample collected from the Indian crude oil reservoir is used to enrich the bacterial communities. The impact of these enriched bacterial communities on the biodegradation of crude oil, biofilm formation, and biocorrosion process are elucidated. A crude oil degradation study is carried out with the minimal salt medium and 94% of crude oil was utilized by enriched bacterial communities. During the crude oil degradation many enzymes including alkane hydroxylase, alcohol dehydrogenase, and lipase are playing a key role in the biodegradation processes. The role of enriched bacterial biofilm on biocorrosion reactions are monitored by weight loss studies and electrochemical analysis. Weight loss study revealed that the biotic system has vigorous corrosion attacks compared to the abiotic system. Both AC-Impedance and Tafel analysis confirmed that the nature of the corrosion reaction take place in the biotic system. Very less charge transfer resistance and higher corrosion current are observed in the biotic system than in the abiotic system. Scanning electron microscope confirms that the dense biofilm formation favoured the pitting type of corrosion. X-ray diffraction analysis confirms that the metal oxides formed in the corrosion systems (biotic). From the metagenomic analysis of the V3–V4 region revealed that presence of diverse bacterial communities in the biofilm, and most of them are uncultured/unknown. Among the known genus, Bacillus, Halomonas, etc are dominant in the enriched bacterial biofilm sample. From this study, we conclude that the uncultured bacterial strains are found to be playing a key role in the pitting type of corrosion and they can utilize crude oil hydrocarbons, which make them succeeded in extreme oil reservoir environments.
اظهر المزيد [+] اقل [-]Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water النص الكامل
2020
Jiang, Nan | Wang, Yuchao | Zhao, Quanlin | Ye, Zhengfang
Via the thermal sintering, a nanocrystalline IrO₂ coating was formed on the Ti substrate to successfully prepare a Ti/IrO₂ electrode. Based on the electrochemical analysis, the prepared Ti/IrO₂ electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV–vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO₂ electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO₂ function group in the TNT red water was degraded completely.
اظهر المزيد [+] اقل [-]Assessment of carbon monoxide exposure in roadside food-vending shanties using coal cookstoves in Kolkata, India النص الكامل
2019
Majumdar, Deepanjan | Sharma, Shubham
Roadside food-vending shanties using coal cookstoves may be an important source of carbon monoxide (CO) exposure in megacities in India. The shanties are often small, congested and poorly ventilated, and very little is known about the level of human exposure to CO. Here, we assessed the level of exposure to CO in 25 roadside food-vending shanties using coal cookstoves in Kolkata, India. Portable electrochemical CO monitors were used to measure CO concentrations during peak and non-peak customer-periods in closed (blocked from three sides) and semi-closed (blocked from two sides) shanties. Measurements were taken where customers sit indoor about 5–7 ft away from the cookstoves. The shanties' ventilation rates were measured using tracer gas concentration-decay technique. Levels of blood carboxyhaemoglobin (COHb) and exhaled CO were estimated using regression models. The 1-hr time weighted average (TWA) indoor CO exposure levels ranged from 7.8 to 18.1 ppm during peak-periods, and 0.7–3.1 ppm during non-peak-periods. The exposure levels during peak-periods exceeded the USEPA's reference limit of 9 ppm in all cases in the closed shanties, and in 71% of cases in the semi-closed shanties. The ventilation rates ranged from 5.5 to 23.4 and 14.8 to 32.5 cubic feet per minute (cfm) per person for the closed and semi-closed shanties, respectively, indicating poor ventilation in some shanties. There was significant variation (p = 0.01) in the level of indoor CO exposure between peak and non-peak periods, and between shanty types. The estimated levels of blood COHb during peak and non-peak hours were 0.78 ± 0.7% and 0.35 ± 0.07%, respectively, that were within the normal physiological values in non-smokers.
اظهر المزيد [+] اقل [-]Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox النص الكامل
2019
Liu, Lihu | Peng, Qichuan | Qiu, Guohong | Zhu, Jun | Tan, Wenfeng | Liu, Chengshuai | Zheng, Lirong | Dang, Zhi
The heavy metal ion adsorption performance of birnessite (a layer-structured manganese oxide) can be enhanced by decreasing the Mn average oxidation state (Mn AOS) and dissolution−recrystallization during electrochemical redox reactions. However, the electrochemical adsorption processes of heavy metal ions by tunnel-structured manganese oxides are still enigmatic. Here, tunnel-structured manganese oxides including pyrolusite (2.3 Å × 2.3 Å tunnel), cryptomelane (4.6 Å × 4.6 Å tunnel) and todorokite (6.9 Å × 6.9 Å tunnel) were synthesized, and their electrochemical adsorptions for Cd²⁺ were performed through galvanostatic charge−discharge. The influence of both supporting ion species in the tunnel and tunnel size on the electrochemical adsorption performance was also studied. The adsorption capacity of tunnel-structured manganese oxides for Cd²⁺ was remarkably enhanced by electrochemical redox reactions. Relative to K⁺ in the tunnel of cryptomelane, the supporting ion H⁺ was more favorable to the electrochemical adsorption of Cd²⁺. With increasing initial pH and specific surface area, the electrochemical adsorption capacity of cryptomelane increased. The cryptomelane electrode could be regenerated by galvanostatic charge−discharge in Na₂SO₄ solution. Due to the differences in their tunnel size and supporting ion species, the tunnel-structured manganese oxides follow the order of cryptomelane (192.0 mg g⁻¹) > todorokite (44.8 mg g⁻¹) > pyrolusite (13.5 mg g⁻¹) in their electrochemical adsorption capacities for Cd²⁺.
اظهر المزيد [+] اقل [-]Electrocatalytical oxidation of arsenite by reduced graphene oxide via in-situ electrocatalytic generation of H2O2 النص الكامل
2019
Li, Xuheng | Liu, Feng | Zhang, Weifang | Lü, Hongbo | Zhang, Jing
Preoxidation of As(III) to As(V) is required for the efficient removal of total arsenic in the treatment of wastewater. In this work, the electro-Fenton oxidation of As(III) with a high efficiency was successfully achieved by using the system of the stainless steel net (SSN) coating with reduced graphene oxide (RGO@SSN) as the cathode and stainless steel net (SSN) as the sacrificial anode. The RGO@SSN was synthesized by electrophoretic deposition-annealing method. The carbon disorder and defects of RGO resulted from the remained oxygen-containing functional groups facilitated the electrocatalytically active sites for two-electron oxygen reduction reaction (ORR). A high concentration (up to 1000 μmol/L) of H₂O₂ was in-situ produced through two-electron oxygen reduction reaction of electro-catalysis, and then served as the electro-Fenton reagent for the oxidation of As(III). HO generated by H₂O₂ participating the electro-Fenton reaction or decomposed at the surface of RGO@SSN cathode at acid condition endowed the strong oxidizing ability for As(III). The electro-Fenton equipped with RGO@SSN cathode has a promising application in the oxidation and removal of organic or inorganic pollutants in wastewater.
اظهر المزيد [+] اقل [-]Research on complexation ability, aromaticity, mobility and cytotoxicity of humic-like substances during degradation process by electrochemical oxidation النص الكامل
2019
Deng, Yang | Chen, Nan | Feng, Chuanping | Chen, Fangxin | Wang, Haishuang | Feng, Yueren | Zheng, Yuhan | Kuang, Peijing | Hu, Weiwu
The humic-like substances were the main organic components in most wastewater (e.g. domestic sewage, toilet wastewater and landfill leachate). Two types of actual humic-like substances (fulvic acid (FA) and biologically treated landfill leachate (BTLL)) were selected to describe the changes in the properties of humic-like substances (complexation ability, aromaticity and mobility) during electrochemical oxidation. Meanwhile, the acute cytotoxicity of FA and BTLL was also tested by acute toxicological test of luminescent bacteria. The results showed that the consumption of coordinating groups such as phenolic groups and hydrogen bonds reduced the complexation ability of FA and BTLL. The functional groups were degraded with the removal order of quinone group, phenolic group and aromatic group, and finally realized the molecular saturation and aromaticity decrease for humic-like substances. The mobility of FA and BTLL was decreased because of the enhancement of hydrophobicity during electrolysis process. Furthermore, the available chlorine produced during electrochemical oxidation was the main acute cytotoxicity substance, therefore, it is necessary to remove it before discharge in order to reduce ecological risks. This study provides a basis for understanding and evaluating the electrochemical degradation process of humic-like substances in detail.
اظهر المزيد [+] اقل [-]Electrochemical oxidation of the polycyclic aromatic hydrocarbons in polluted concrete of the residential buildings النص الكامل
2017
Aćimović, Danka D. | Karić, Slavko D. | Nikolić, Željka M. | Brdarić, Tanja P. | Tasić, Gvozden S. | Marčeta Kaninski, Milica P. | Nikolić, Vladimir M.
Polycyclic aromatic hydrocarbons (PAH) have been listed by the United States Environmental Protection Agency (US EPA) and by the European Community as priority environmental pollutants. The removal of PAHs from soils, sediments and waste water has attracted attention of scientists and engineers for several decades. Electrochemical oxidation of PAH compounds in water, is receiving increasing attention, due to its convenience and simplicity. In this study we performed electrochemical oxidation of 16 EPA PAHs mixture in 10% NaCl aqueous solution in potentiostatic conditions, at voltage 1 V. Decrease of concentration of some individual PAHs, up to 70% referred to their starting concentration, after 60 min of electrolysis, was confirmed by UPLC/PDA analysis. In further work investigation was extrapolated to in situ removal of PAHs from concrete, as the medium where, to our knowledge, such way of PAH removal has not been investigated before.High concentrations of PAH contamination occurred in the concrete structure of the residential buildings in Belgrade in 2014. Application of DC voltage of 50 V between nickel and stainless steel electrodes packed in the concrete wall, moisturized with the 10% NaCl solution, led to considerable removal of the pollutants by oxidation process throughout the concrete.
اظهر المزيد [+] اقل [-]