خيارات البحث
النتائج 1 - 10 من 38
Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives
2020
Sowani, Harshada | Kulkarni, Mohan | Zinjarde, Smita
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m⁻¹ after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
اظهر المزيد [+] اقل [-]Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste
2022
Venkatesan, Swathi Krishnan | Uddin, Maseed | Rajasekaran, Muneeswari | Ramani Kandasamy, | Ganesan, Sekaran
Bioremediation of real-time petroleum refining industry oily waste (PRIOW) is a major challenge due to the poor emulsification potential and oil sludge disintegration efficiency of conventional bioamphiphile molecules. The present study was focused on the design of a covalently engineered supramolecular bioamphiphile complex (SUBC) rich in hydrophobic amino acids for proficient emulsification of hydrocarbons followed by the concomitant degradation of total petroleum hydrocarbons (TPH) in PRIOW using the hydrocarbonoclastic microbial bio-formulation system. The synthesis of SUBC was carried out by pH regulated microbial biosynthesis process and the yield was obtained to be 450.8 mg/g of petroleum oil sludge. The FT-IR and XPS analyses of SUBC revealed the anchoring of hydrophilic moieties of monomeric bioamphiphilic molecules, resulting in the formation of SUBC via covalent interaction. The SUBC was found to be lipoprotein in nature. The maximum loading capacity of SUBC onto surface modified rice hull (SMRH) was achieved to be 45.25 mg/g SMRH at the optimized conditions using RSM-CCD design. The SUBC anchored SMRH was confirmed using SEM, FT-IR, XRD and TGA analyses. The adsorption isotherm models of SUBC onto SMRH were performed. The integrated approach of SUBC-SMRH and hydrocarbonoclastic microbial bio-formulation system, emulsified oil from PRIOW by 92.86 ± 2.26% within 24 h and degraded TPH by 89.25 ± 1.75% within 4 days at the optimum dosage ratio of SUBC-SMRH (0.25 g): PRIOW (1 g): mass of microbial-assisted biocarrier material (0.05 g). The TPH degradation was confirmed by SARA fractional analysis, FT-IR, ¹H NMR and GC-MS analyses. The study suggested that the application of covalently engineered SUBC has resulted in the accelerated degradation of real-time PRIOW in a very short duration without any secondary sludge generation. Thus, the SUBC integrated approach can be considered to effectively manage the hydrocarbon contaminants from petroleum refining industries under optimal conditions.
اظهر المزيد [+] اقل [-]Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6
2021
Baskaran, Shobanah Menon | Zakaria, Mohd Rafein | Mukhlis Ahmad Sabri, Ahmad Syafiq | Mohamed, Mohd Shamzi | Wasoh, Helmi | Toshinari, Maeda | Hassan Mohd. Ali, | Banat, Ibrahim M.
Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced. The maximum RLs production of 2.73 g/L was obtained when P. aeruginosa RS6 was grown in a basal salt medium supplemented with 1% waste glycerol and 0.2 M sodium nitrate at 35 °C and pH 6.5. At optimal fermentation conditions, the emulsification index (E₂₄) values of cooking oil, diesel oil, benzene, olive oil, petroleum, and kerosene were all above E₂₄₌50%. The surface tension reduction obtained from 72.13 mN/m to 29.4–30.4 mN/m was better than the surface activity of some chemical-based surfactants. The RLs produced possessed antimicrobial activities against Gram-negative and Gram-positive bacteria with values ranging from 37% to 77% of growth inhibition when 1 mg/mL of RLs was used. Concentrations of RLs below 1500 μg/mL did not induce phytotoxicity effects on the tested seeds (Vigna radiata) compared to the chemical-based- surfactant, SDS. Furthermore, RLs tested on zebrafish (Danio rerio) embryos only exhibited low acute toxicity with an LC₅₀ value of 72.97 μg/mL at 48 h of exposure suggesting a green and eco-biochemical worthy of future applications to replace chemical-based surfactants.
اظهر المزيد [+] اقل [-]Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment
2018
Lee, Dong Wan | Lee, Hanbyul | Kwon, Bong-Oh | Khim, Jong Seong | Yim, Un Hyuk | Kim, Beom Seok | Kim, Jae Jin
Crude oil and its derivatives are considered as one group of the most pervasive environmental pollutants in marine environments. Bioremediation using oil-degrading bacteria has emerged as a promising green cleanup alternative in more recent years. The employment of biosurfactant-producing and hydrocarbon-utilizing indigenous bacteria enhances the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. In this study, the best candidates of biosurfactant-producing indigenous bacteria were selected by screening of biochemical tests. The selected bacteria include Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), and Pseudoalteromonas agarivorans (SDRB-Py1). In general, these isolated species caused low surface tension values (33.9–41.3 mN m−1), high oil spreading (1.2–2.4 cm), and hydrocarbon emulsification (up to 65%) warranting active degradation of hydrocarbons. FT-IR and LC-MS analyses indicated that the monorhamnolipid (Rha-C16:1) and dirhamnolipid (Rha-Rha-C6-C6:1) were commonly produced by the bacteria as potent biosurfactants. The residual crude oil after the biodegradation test was quantitated using GC-MS analysis. The bacteria utilized crude oil as their sole carbon source while the amount of residual crude oil significantly decreased. In addition the cell-free broth containing biosurfactants produced by bacterial strains significantly desorbed crude oil in oil-polluted marine sediment. The selected bacteria might hold additional capacity in crude oil degradation. Biosurfactant-producing indigenous bacteria therefore degrade crude oil hydrocarbon compounds, produce biosurfactants that can increase the emulsification of crude oil and are thus more conducive to the degradation of crude oil.
اظهر المزيد [+] اقل [-]The oil spill model OILTRANS and its application to the Celtic Sea
2012
Berry, Alan | Dąbrowski, Tomasz | Lyons, Kieran
This paper describes details of an oil spill model, OILTRANS, developed by the authors. The model is an off-line particle-transport model coupled to the most up to date operational met-ocean model forecasts. Formulations for the dominant oil fate processes of spreading, advection, diffusion, evaporation, emulsification and dispersion have been encoded, providing the model with the ability to accurately predict the horizontal movement of surface oil slick, the vertical entrainment of oil into the water column and the mass balance of spilled oil. The application of the OILTRANS model to an accidental release during a ship-to-ship fuel transfer in the Celtic Sea in February 2009 is presented to validate the system. Comparisons with aerial observations of the oil slick at the time of the incident, and subsequent model simulations, indicate that the OILTRANS model is capable of accurately predicting the transport and fate of the oil slick.
اظهر المزيد [+] اقل [-]Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea
2012
Hassanshahian, Mehdi | Emtiazi, Giti | Cappello, Simone
Twenty-five crude-oil-degrading bacteria were isolated from oil-contaminated sites in the Persian Gulf and the Caspian Sea. Based on a high growth rate on crude oil and on hydrocarbon degradation ability, 11 strains were selected from the 25 isolated strains for further study. Determination of the nucleotide sequence of the 16S rRNA gene showed that these isolated strains belonged to genera Acinetobacter, Pseudomonas, Gordonia, Rhodococcus, Cobetia, Halomonas, Alcanivorax, Marinobacter and Microbacterium. Among the 11 isolates, strains BS (Acinetobacter calcoaceticus, 98%) and PG-12 (Alcanivorax dieselolei, 98%) were the most effective in degrading crude oil. Rate of crude-oil degradation of 82% (isolate BS) and 71% (isolate PG-12) were observed after 1week of cultivation in mineral medium. These strains had high emulsification activity and biosurfactant production. GC–MS analysis showed that A. dieselolei PG-12 can degrade different alkanes in crude oil. Screening of the distribution of the alkane hydroxylase gene in 25 isolates in relation to the source of isolation indicated that the group (II) alkane hydroxylase is prevalent in the Caspian Sea, but in the Persian Gulf, the frequency of the group (III) alkane hydroxylase gene is greater than that of the group (II) alkane hydroxylase gene.
اظهر المزيد [+] اقل [-]Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol
2018
Caron, Alexandra G.M. | Thomas, Colette R. | Berry, Kathryn L.E. | Motti, Cherie A. | Ariel, Ellen | Brodie, J. E. (Jon E.)
Ocean contamination by plastics is a global issue. Although ingestion of plastic debris by sea turtles has been widely documented, contamination by microplastics (<5mm) is poorly known and likely to be under-reported. We developed a microplastic extraction protocol for examining green turtle (Chelonia mydas) chyme, which is multifarious in nature, by modifying and combining pre-established methods used to separate microplastics from organic matter and sediments. This protocol consists of visual inspection, nitric acid digestion, emulsification of residual fat, density separation, and chemical identification by Fourier transform infrared spectroscopy. This protocol enables the extraction of polyethylene, high-density polyethylene, (aminoethyl) polystyrene, polypropylene, and polyvinyl chloride microplastics >100μm. Two macroplastics and seven microplastics (two plastic paint chips and five synthetic fabric particles) were isolated from subsamples of two green turtles. Our results highlight the need for more research towards understanding the impact of microplastics on these threatened marine reptiles.
اظهر المزيد [+] اقل [-]State of the art review and future directions in oil spill modeling
2017
Spaulding, Malcolm L.
A review of the state of the art in oil spill modeling, focused on the period from 2000 to present is provided. The review begins with an overview of the current structure of spill models and some lessons learned from model development and application and then provides guiding principles that govern the development of the current generation of spill models. A review of the basic structure of spill models, and new developments in specific transport and fate processes; including surface and subsurface transport, spreading, evaporation, dissolution, entrainment and oil droplet size distributions, emulsification, degradation, and sediment oil interaction are presented. The paper concludes with thoughts on future directions in the field with a primary focus on advancements in handling interactions between Lagrangian elements.
اظهر المزيد [+] اقل [-]A model for the weathering of Colombian crude oils in the Colombian Caribbean Sea
2017
Ramírez, Juan | Merlano, Aura | Lacayo, Juan | Osorio, Andres F. | Molina, Alejandro
A model that describes the weathering of crude in an oil spill caused by interaction with the atmosphere and the ocean was developed. This model was adapted to the Colombian crudes Cusiana (°API43.2) and Vasconia (°API20.7). To calibrate the model, evaporation and emulsification experiments were carried out at conditions similar to those of an oil spill in the Colombian Caribbean Sea. The dependence of evaporation with wind velocity, not predicted by the state-of-the-art models, was captured by a correlation for the mass transfer coefficient calculated from the experimental data. Emulsification rate, maximum water content and required evaporation to form an emulsion were determined and their values explained considering the effect of wax precipitation for Cusiana crude oil. When compared to well-established weathering software, such as ADIOS, the proposed model predicts the weathering of Colombian oils in a way that better agrees with the experiments conducted in the laboratory.
اظهر المزيد [+] اقل [-]Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf
2015
Bayat, Zeynab | Hassanshahian, Mehdi | Hesni, Majid Askari
To date, little is known about existing relationships between mussels and bacteria in hydrocarbon-contaminated marine environments. The aim of this study is to find crude oil degrading bacteria in some mussels at the Persian Gulf. Twenty eight crude oil degrading bacteria were isolated from three mussels species collected from oil contaminated area at Persian Gulf. According to high growth and degradation of crude oil four strains were selected between 28 isolated strains for more study. Determination the nucleotide sequence of the gene encoding for 16S rRNA show that these isolated strains belong to: Shewanella algae isolate BHA1, Micrococcus luteus isolate BHA7, Pseudoalteromonas sp. isolate BHA8 and Shewanella haliotis isolate BHA35. The residual crude oil in culture medium was analysis by Gas Chromatography (GC). The results confirmed that these strains can degrade: 47.24%, 66.08%, 27.13% and 69.17% of crude oil respectively. These strains had high emulsification activity and biosurfactant production. Also, the effects of some factors on crude oil degradation by isolated strains were studied. The results show that the optimum concentration of crude oil was 2.5% and the best degradation take place at 12% of salinity. This research is the first reports on characterization of crude oil degrading bacteria from mussels at Persian Gulf and by using of these bacteria in the field the effect of oil pollution can be reduce on this marine environment.
اظهر المزيد [+] اقل [-]