خيارات البحث
النتائج 1 - 10 من 251
Assessing the emission consequences of an energy rebound effect in private cars in Israel
2022
Steren, Aviv | Rosenzweig, Stav | Rubin, Ofir D.
The UN Sustainable Development Goal, SDG 7.3, is to double the global rate of improvement in energy efficiency by 2030. To meet this and other energy targets, countries encourage the development and adoption of energy-efficient products. An extensively researched phenomenon in this context is the energy rebound effect, especially in transportation. However, the direct relationship between the energy rebound effect and car emission levels has barely been investigated. Understanding this relationship is important, because energy-related emissions are closely linked to mortality, morbidity, and climate change. We assess the emission consequences in the private car market in Israel of a rebound effect associated with a policy promoting energy-efficient cars. We find that the baseline rebound before introduction of the policy was 40%. In the following three periods marked by policy changes, it grew to 54%, 69%, and 88%. Using household data with specific car characteristics and usage, we calculate the added greenhouse gas (GHG) emission consequences of this rebound by the end of the studied period to be about 5% of the country's per-capita target. Notably, estimates for the emission consequences using “average car” values were almost twice as high. The reason for this gap derives from the co-dependance between car usage and car efficiency. We discuss the implications of this gap in meeting emission goals.
اظهر المزيد [+] اقل [-]Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city
2021
Luo, Qing | Ren, Yuxuan | Sun, Zehang | Li, Yu | Li, Bing | Yang, Sen | Zhang, Wanpeng | Hu, Yuanan | Cheng, Hefa
Although already eliminated in most industrial processes, mercury, as an essential ingredient in all energy-efficient lighting technologies, is still used in fluorescent lamp manufacturing. This study was conducted to investigate the atmospheric pollution caused by fluorescent lamp production and assess the associated public health risk in a large industrial and commercial city of south China, Zhongshan, which is a major production hub of lighting products. Concentrations of total gaseous mercury (TGM) in the atmosphere were measured over a total of 342 sites in the industrial, commercial, and residential areas. The average levels of TGM in the industrial, commercial, and residential areas prior to the landing of a typhoon were 12 ± 11, 3.6 ± 2.1, and 2.7 ± 1.3 ng⋅m⁻³, respectively. TGM concentrations in the industrial areas exhibited significant diurnal variation, with levels in the working hours being much higher than those in the non-working hours, which indicates that the high atmospheric mercury concentrations were contributed by local emissions, instead of regional transport. Most fluorescent lamp manufacturing activities in the city were shut down during a typhoon event, which resulted in a significant reduction in the average TGM level (down to 1.6 ± 1.8 ng⋅m⁻³) and rendered the difference in the average TGM levels in the industrial areas no longer significant between the working and non-working hours. Elevated TGM levels (up to 49 ng⋅m⁻³) were found near clusters of small-scale fluorescent lamp workshops in both industrial and commercial areas, which is indicative of significant emissions of mercury vapor resulting from obsolete equipment and production technologies. No significant non-carcinogenic risk was found for the general residents in the sampling area over the study period, while the risk for the workers in the fluorescent lamp manufacturing facilities and workshops could be higher. These findings indicate that fluorescent lamp manufacturing in the developing countries is a major source of atmospheric mercury.
اظهر المزيد [+] اقل [-]Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power
2020
Ansari, Shahid H. | Ahmed, Ashfaq | Razzaq, Abdul | Hildebrandt, Diane | Liu, Xinying | Park, Young-Kwon
Biomass integrated gasification combined cycle (IGCC) is attracting increased interest because it can achieve high system energy efficiency (>50%), which is predicted to increase with the increase in the solar share in biomass IGCC. This study evaluated the potential of crop residues numerically for the co-production of power and bio-fertilizer using ASPEN Plus® simulation software. The results showed that the gas yield increases with increasing temperature and decreasing pressure while the yield of bio-fertilizer is dependent on the biomass composition. The biomass with a low ash content produces high bio-fertilizer at the designated gasification temperature. The IGCC configuration conserves more energy than a directly-fired biomass power plant. In addition, the solar-assisted IGCC attains a higher net electricity output per unit of crop residue feed and achieves net thermal efficiencies of around 53%. The use of such hybrid systems offer the potential to produce 0.55 MW of electricity per unit of solar-thermal energy at a relatively low cost. The ASPEN Plus model predicted that the solar biomass-based IGCC set up is more efficient in increasing the power generation capacity than any other conversion system. The results showed that a solar to electricity efficiency of approximately 55% is achievable with potential improvements. This work will contribute for the sustainable bioenergy production as the relationship between energy production and biomass supplies very important to ensure the food security and environmental sustainability.
اظهر المزيد [+] اقل [-]The heterogeneous effect of socioeconomic driving factors on PM2.5 in China’s 30 province-level administrative regions: Evidence from Bayesian hierarchical spatial quantile regression
2020
Zou, Qingrong | Shi, Jian
China has become one of the most serious PM₂.₅-dominated air pollution country. Despite a great deal of research has focused on analysing the influence of social and economic driving forces of PM₂.₅ pollution in China, most research in existence either applying mean regression or failing to consider the spatial autocorrelation. Motivated by this, this paper utilizes a Bayesian hierarchical spatial quantile regression method to explore the effect of socioeconomic activity on PM₂.₅ air pollution. By introducing spatial random effects into the model, the spatial autocorrelations of residuals are significantly reduced. The empirical study demonstrated that the PM₂.₅ concentration levels were strongly correlated with total population, urbanization rate, industrialization level and energy efficiency at all quantiles. For upper quantiles, the impact of urbanization rate on the haze is the greatest among all the predictors, then followed by the total population; while for lower quantiles, industrialization has the greatest impact on the PM₂.₅ concentration. The impacts of energy efficiency in the lower 15% and upper 15% quantiles are higher compared to any of the other quantiles.
اظهر المزيد [+] اقل [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
اظهر المزيد [+] اقل [-]Assessment of ethanol blended fuels for gasoline vehicles in China: Fuel economy, regulated gaseous pollutants and particulate matter
2019
Wu, Xian | Zhang, Shaojun | Guo, Xin | Yang, Zhengjun | Liu, Jiaqian | He, Liqiang | Zheng, Xuan | Han, Lu | Liu, Huan | Wu, Ye
The government of China has announced an ambitious plan to expand the mandatory use of ethanol blended gasoline fuels by 2020. Given the dissimilarity in fuel properties between China and other countries with ethanol blending practices, it is necessary to assess the energy and environmental impacts of ethanol blending. In this study, we prepared two types of ethanol blended fuels (E10, with ethanol contents of approximately 10%) with lower contents of aromatics (ELA) and olefins (ELO), respectively, compared with the market China 5 gasoline. Nine in-use gasoline vehicles varying by manufacturer, engine technology, model year, and emission standard level were analyzed using a chassis dynamometer, which followed the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). Two major positive effects from using E10 fuels could be observed in this study. First, tested turbocharged gasoline direct injection (GDI) vehicles could gain reductions in CO₂ emission, fuel consumption and energy consumption by switching to the higher-octane-number ELO. This finding, along with the engine development trends in the automotive industry (e.g., downsizing and higher compression ratio), may have a synergistic effect to deliver greater energy efficiency in the future. Second, the two ethanol blended fuels could be more effective in reducing the particle mass (PM) and particle number (PN) emissions than the levels of using China 5 gasoline. Notably, the benefit of using ELO was more significant, with average emission reductions of 35% for the PM and of 44% for the PN. However, ELA and ELO possibly increased emissions of gaseous pollutants for certain vehicles in the study, but the intra-vehicle differences between the various fuel groups were not statistically significant (not significant, p > 0.05, t-test). We suggest that more measurements under various environmental conditions and comprehensive air quality simulations should be conducted to better understand the environmental impacts of ethanol blending in China.
اظهر المزيد [+] اقل [-]Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase
2021
Zeng, Jun | Li, Yanjie | Dai, Yeliang | Wu, Yucheng | Lin, Xiangui
While bioremediation using soil microorganisms is considered an energy-efficient and eco-friendly approach to treat polycyclic aromatic hydrocarbon (PAH)-contaminated soils, a variety of polar PAH metabolites, particularly oxygenated ones, could increase the toxicity of the soil after biodegradation. In this study, a typical bio-oxidative transformation of PAH into quinones was investigated in soil amended with laccase using three PAHs with different structures (anthracene, benzo[a]anthracene, and benzo[a]pyrene) to assess the toxicity after oxidative bioremediation. The results show that during a 2-month incubation period the oxidation process promoted the formation of non-extractable residues (NERs) of PAHs, and different effects on mineralization were observed among the three PAHs. Oxidation enhanced the mineralization of the high-molecular-weight (HMW) PAHs (benzo[a]anthracene and benzo[a]pyrene) but inhibited the mineralization of the low-molecular-weight (LMW) PAH (anthracene). The inhibition of anthracene suggests increased toxicity after oxidative bioremediation, which coincided with a decrease in soil nitrification activity, bacterial diversity and PAH-ring hydroxylating dioxygenase gene copies. The analysis of PAH metabolites in soil extract indicated that oxidation by laccase was competitive with the natural transformation processes of PAHs and revealed that intermediates other than quinone metabolites increased the toxicity of soil during subsequent degradation. The different metabolic profiles of the three PAHs indicated that the toxicity of soil after PAH oxidation by laccase was strongly affected by the PAH structure. Despite the potential increase in toxicity, the results suggest that oxidative bioremediation is still an eco-friendly method for the treatment of HMW PAHs since the intermediates from HMW PAHs are more easily detoxified via NER formation than LMW PAHs.
اظهر المزيد [+] اقل [-]C-offset and crop energy efficiency increase due industrial poultry waste use in long-term no-till soil minimizing environmental pollution
2021
Romaniw, Jucimare | de Moraes Sá, João Carlos | Lal, R. | de Oliveira Ferreira, Ademir | Inagaki, Thiago Massao | Briedis, Clever | Gonçalves, Daniel Ruiz Potma | Canalli, Lutécia Beatriz | Padilha, Alessandra | Bressan, Pamela Thaísa
Brazil is one of the major global poultry producers, and the organic waste generated by the chicken slaughterhouses can potentially be used as a biofertilizer in agriculture. This study was designed to test the hypothesis that continuous use of biofertilizer to the crops, substituting the use of mineral fertilizer promote C-offset for the soil and generate crop energy efficiency for the production system. Thus, the objectives of this study were to evaluate the effects of biofertilizer use alone or in combination with mineral fertilizer on soil organic carbon (SOC) stock, carbon dioxide (CO₂) mitigation, C-offset, crop energy efficiency and productivity, and alleviation of environmental pollution. The experiment was established in southern Brazil on a soil under 15 years of continuous no-till (NT). Experimental treatments were as follows: i) Control with no fertilizer application, ii) 100% use of industrial mineral fertilizer (Min-F); iii) 100% use of organic waste originated from poultry slaughterhouses and hereinafter designated biofertilizer (Bio-F), and iv) Mixed fertilizer equivalent to the use of 50% mineral fertilizer + 50% of biofertilizer (Mix-F). Effects of experimental treatments were assessed for the crop sequence based on bean (Phaseolus vulgaris), soybean (Glycine max) and corn (Zea mays) in the summer and wheat (Triticum aestivum) and black oat (Avena strigosaSchreb) in the winter composing two crops per year, as follow: bean/wheat-soybean/black oat-corn/wheat-soybean/black oat-corn/wheat-bean. The continuous use of Bio-F treatment significantly increased the index of crop energy efficiency. It was higher than that of control, and increased it by 25.4 Mg CO₂eq ha⁻¹ over that of Min-F treatment because of higher inputs of crop biomass-C into the system. Further, continuous use of Bio-F resulted in a significantly higher CO₂eq stock and offset than those for Min-F treatment. A positive relationship between the C-offset and the crop energy efficiency (R² = 0.71, p < 0.001) indicated that the increase of C-offset was associated with the increase of energy balance and the amount of SOC sequestered. The higher energy efficiency and C-offset by application of Bio-F indicated that the practice of crop bio fertilization with poultry slaughterhouse waste is a viable alternative for recycling and minimizing the environmental impacts.
اظهر المزيد [+] اقل [-]Remediation of pyrene contaminated soil by double dielectric barrier discharge plasma technology: Performance optimization and evaluation
2020
Abbas, Yawar | Lu, Wenjing | Wang, Qian | Dai, Huixing | Liu, Yanting | Fu, Xindi | Pan, Chao | Ghaedi, Hosein | Zheng, Feng | Wang, Hongtao
Polycyclic aromatic hydrocarbons (PAHs) in soil are not only detrimental to environment but also to human health. Double dielectric barrier discharge (DDBD) plasma reactor used for the remediation of pyrene contaminated soil was studied. The performance of DDBD reactor was optimized with influential parameters including applied voltage, type of carrier gas, air feeding rate as well as pyrene initial concentration. The analysis of variance (ANOVA) results showed that input energy had a great effect on pyrene remediation efficiency followed by pyrene initial concentration, while, the effect of air feeding rate was insignificant. More specifically, the remediation efficiency of pyrene under air, nitrogen and argon as carrier gas were approximately 79.7, 40.7 and 38.2% respectively. Pyrene remediation efficiency is favored at high level of applied voltages and low level of pyrene initial concentration (10 mgkg⁻¹) and air feeding rate (0.85 L/min). Moreover, computation of the energy efficiency of the DDBD system disclosed that an optimal applied voltage (35.8 kV) and higher initial pyrene concentration (200 mgkg⁻¹) favored the high energy efficiency. A regression model predicting pyrene remediation under DDBD plasma condition was developed using the data from a face-centered central composite design (FCCD) experiment. Finally, the residual toxicity analysis depicted that the respiratory activity increased more than 21 times (from 0.04 to 0.849 mg O₂ g⁻¹) with a pyrene remediation efficiency of 81.1%. The study demonstrated the DDBD plasma technology is a promising method not only for high efficiency of pyrene remediation, but also recovering biological function without changing the physical-chemical properties of soil.
اظهر المزيد [+] اقل [-]Near-source air quality impact of a distributed natural gas combined heat and power facility
2019
Yang, Bo | Gu, Jiajun | Zhang, Tong | Zhang, K Max
The wide adoption of combined heat and power (CHP) can not only improve energy efficiency, but also strengthens energy system resiliency. While CHP reduces overall emissions compared to generating the same amount of electricity and heat separately, its on-site nature also means that CHP facilities operate in populated areas, raising concerns over their near-source air quality impact. Evaluation of the near-source impact of distributed CHP is limited by emission data availability, especially in terms of particulate matter (PM). In this paper, we report on stack emission testing results of a community-scale CHP plant with two natural gas turbine units (15 MW each) from measurements conducted in both 2010 and 2015, and assess the near-source air quality impact using an integrated modeling framework using the stack test results, site-specific meteorological data and terrain profiles with buildings. The NOx removal efficiency by selective catalytic reduction (SCR) is estimated to be ∼83% according to the emission testing. The integrated framework employs AERMOD to screen air quality in a 2.7 km × 2.3 km domain from 2011 to 2015 to identify the highest ground-level concentrations (GLCs). Examining the corresponding meteorological conditions, we find that those high GLCs appeared during the stable atmospheric boundary layer with relative high wind speed. Next, the worse-case scenarios identified from the screening process are simulated using the detailed Unsteady Reynolds Averaged Navier-Stokes (URANS) model coupled with a chemistry solver. The results generally show low GLCs of primary PM₂.₅ for this case study. However, our analysis also suggests greater building downwash impacts with the presence of taller and denser urban structures. Therefore, the near-source impact of natural gas-fired CHP in large metropolitan areas is worthy of further investigation.
اظهر المزيد [+] اقل [-]