خيارات البحث
النتائج 1 - 10 من 115
A survey of southern England coastal waters for the s-triazine antifouling compound Irgarol 1051.
1994
Gough M.A. | Fothergill J. | Hendrie J.D.
Exposure of construction workers to hazardous emissions in highway rehabilitation projects measured with low-cost sensors
2022
Blaauw, Sheldon A. | Maina, James W. | O'Connell, Johan
Construction workers on highway rehabilitation projects can be exposed to a combination of traffic- and construction-related emissions. To assess the personal exposure a worker experiences, a portable battery-operated Air Quality Device (AQD) was utilised to measure emissions during normal construction operations of a major road rehabilitation project. Emissions measured were nitrogen dioxide (NO₂), Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM₁₀, PM₂.₅, and PM₁). The objective of the paper is to document the hazardous emissions that construction workers may be exposed to and allow for a basis of informed decision making to mitigate the risks of a road construction project. Most critically, this article is designed to raise awareness of the potential impact to a worker's wellbeing as well as highlight the need for further research. Through statistical analysis, asphalt paving was identified as the most hazardous activity in terms of exposure relative to other activities. This activity was further assessed using discrete-time Markov chain Monte Carlo simulations with results indicating a high probability that workers may be exposed to greater hazardous emission concentrations than measured. Limiting the distance to the source of emissions, large-scale use of warm-mix asphalt and reducing the idling times of construction vehicles were identified as practical mitigation measures to reduce exposure and aid in achieving zero-harm objectives. Finally, it is found that males are more susceptible to long-term implications of hazardous emission inhalation and should be more aware if the scenarios they might work in expose them to this.
اظهر المزيد [+] اقل [-]Links between air pollution and COVID-19 in England
2021
Travaglio, Marco | Yu, Yizhou | Popovic, Rebeka | Selley, Liza | Leal, Nuno Santos | Martins, Luis Miguel
In December 2019, a novel disease, coronavirus disease 19 (COVID-19), emerged in Wuhan, People’s Republic of China. COVID-19 is caused by a novel coronavirus (SARS-CoV-2) presumed to have jumped species from another mammal to humans. This virus has caused a rapidly spreading global pandemic. To date, over 300,000 cases of COVID-19 have been reported in England and over 40,000 patients have died. While progress has been achieved in managing this disease, the factors in addition to age that affect the severity and mortality of COVID-19 have not been clearly identified. Recent studies of COVID-19 in several countries identified links between air pollution and death rates. Here, we explored potential links between major fossil fuel-related air pollutants and SARS-CoV-2 mortality in England. We compared current SARS-CoV-2 cases and deaths from public databases to both regional and subregional air pollution data monitored at multiple sites across England. After controlling for population density, age and median income, we show positive relationships between air pollutant concentrations, particularly nitrogen oxides, and COVID-19 mortality and infectivity. Using detailed UK Biobank data, we further show that PM₂.₅ was a major contributor to COVID-19 cases in England, as an increase of 1 m³ in the long-term average of PM₂.₅ was associated with a 12% increase in COVID-19 cases. The relationship between air pollution and COVID-19 withstands variations in the temporal scale of assessments (single-year vs 5-year average) and remains significant after adjusting for socioeconomic, demographic and health-related variables. We conclude that a small increase in air pollution leads to a large increase in the COVID-19 infectivity and mortality rate in England. This study provides a framework to guide both health and emissions policies in countries affected by this pandemic.
اظهر المزيد [+] اقل [-]Stochastic optimisation of organic waste-to-resource value chain
2021
Robles, Ivan | Durkin, Alex | Guo, Miao
Organic fraction municipal solid waste (OFMSW) has a high potential for energy and value-added product recovery due to its carbon- and nutrient-rich composition; however, traditional value chains have treated OFMSW as an undesired by-product. This study focuses on value chain optimisation to assist the transition to resource recovery value chains. To achieve this, this work combined two stage stochastic mathematical optimisation with geographical spatial analysis and time series waste generation analysis. Existing infrastructure in England, including anaerobic digestion plants and road transportation networks, were included in the model. To account for uncertainty in waste generation, multiple scenarios and their associated probabilities were developed based on environmental variables. The optimisation problem was solved to further advance the understanding of economically optimal waste-to-resource value chains under waste generation variability. The pertinent decision variables included sizing, technology selection, waste flows and location of thermochemical treatment sites. The model highlights the potential reduction in system profitability as a result of different operating constraints, such as minimum plant operating capacity factors and landfill taxation. The latter was shown to have the largest impact on profitability as overconservative systems designs were implemented to hedge against the waste variability. Such computer-aided models offer opportunities to overcome the challenges posed by waste generation variability and waste to resource value chain transformation.
اظهر المزيد [+] اقل [-]Investigating the distribution and regional occurrence of anthropogenic litter in English marine protected areas using 25 years of citizen-science beach clean data
2020
Nelms, Sarah E. | Eyles, Lauren | Godley, Brendan J. | Richardson, Peter B. | Selley, Hazel | Solandt, Jean-Luc | Witt, Matthew J.
Marine Protected Areas (MPAs) are designated to enable the management of damaging activities within a discrete spatial area, and can be effective at reducing the associated impacts, including habitat loss and over-exploitation. Such sites, however, may be exposed to the potential impacts from broader scale pressures, such as anthropogenic litter, due to its diffuse nature and lack of constraint by legislative and/or political boundaries. Plastic, a large component of litter, is of particular concern, due to increasing evidence of its potential to cause ecological and socio-economic damage. The presence of sensitive marine features may mean that some MPAs are at greater potential risk from the impacts of plastic pollution than some non-protected sites. Understanding the abundance, distribution and composition of litter along coastlines is important for designing and implementing effective management strategies. Gathering such data, however, can be expensive and time-consuming but litter survey programmes that enlist citizen scientists are often able to resolve many of the logistical or financial constraints. Here, we examine data collected over 25-years (1994–2018), by Marine Conservation Society volunteers, for spatial patterns in relation to the English MPA network, with the aim of highlighting key sources of litter and identifying management priority areas. We found that MPAs in southeast (Kent) and southwest (Cornwall and Devon) England have the highest densities of shore-based litter. Plastic is the main material constituent and public littering the most common identifiable source. Items attributed to fishing activities were most prevalent in southwest MPAs and sewage related debris was highest in MPAs near large rivers and estuaries, indicating localised accumulation. When comparing inside and outside of MPAs, we found no difference in litter density, demonstrating the need for wider policy intervention at local, national and international scales to reduce the amount of litter.
اظهر المزيد [+] اقل [-]Arsenic concentrations, distributions and bioaccessibilities at a UNESCO World Heritage Site (Devon Great Consols, Cornwall and West Devon Mining Landscape)
2020
Braungardt, Charlotte | Chen, Xiaqing | Chester-Sterne, Daniel | Quinn, James G.A. | Turner, Andrew
Devon Great Consols (DGC) is a region in south west England where extensive mining for Cu, Sn and As took place in the nineteenth century. Because of its historical and geological significance, DGC has protected status and is part of the Cornwall and West Devon Mining Landscape UNESCO World Heritage Site. Recently, the region was opened up to the public with the construction or redevelopment of various trails, tracks and facilities for walking, cycling and field visits. We used portable x-ray fluorescence spectrometry to measure, in situ, the concentrations of As in soils and dusts in areas that are accessible to the public. Concentrations ranged from about 140 to 75,000 μg g⁻¹ (n = 98), and in all but one case exceeded a Category 4 Screening Level for park-type soil of 179 μg g⁻¹. Samples returned to the laboratory and fractionated to <63 μm were subjected to an in vitro assessment of both oral and inhalable bioaccessibility, with concentrations ranging from <10 to 25,500 μg g⁻¹ and dependent on the precise nature and origin of the sample and the physiological fluid applied. Concentrations of As in PM₁₀ collected along various transects of the region averaged over 30 ng m⁻³ compared with a typical concentration in UK air of <1 ng m⁻³. Calculations using default EPA and CLEA estimates and that factor in for bioaccessibility suggest a 6-h visit to the region results in exposure to As well in excess of that of minimum risk. The overall risk is exacerbated for frequent visitors to the region and for workers employed at the site. Based on our observations, we recommend that the remodelling or repurposing of historical mine sites require more stringent management and mitigation measures.
اظهر المزيد [+] اقل [-]Lead bioaccessibility in topsoils from lead mineralisation and urban domains, UK
2013
Appleton, J.D. | Cave, M.R. | Palumbo-Roe, B. | Wragg, J.
Predictive linear regression (LR) modelling indicates that total Pb is the only highly significant independent variable for estimating Pb bioaccessibility in “mineralisation domains” located in limestone (high pH) and partly peat covered (low pH) shale-sandstone terrains in England. Manganese is a significant minor predictor in the limestone terrain, whilst organic matter and sulphur explain 0.5% and 2% of the variance of bioaccessible Pb in the peat-shale-sandstone terrain, compared with 93% explained by total Pb. Bootstrap resampling shows that LR confidence limits overlap for the two mineralised terrains but the limestone terrain has a significantly lower bioaccessible Pb to total Pb slope than the urban domain. A comparison of the absolute values of stomach and combined stomach-intestine bioaccessibility provides some insight into the geochemical controls on bioaccessibility in the contrasting soil types.
اظهر المزيد [+] اقل [-]The formation of bound residues of diazinon in four UK soils: Implications for risk assessment
2011
Fenlon, Katie A. | Andreou, Kostas | Jones, K. C. (Kevin C.) | Semple, K. T. (Kirk T.)
The behaviour of diazinon in the soil determines the likelihood of further pollution incidents, particularly leaching to water. The most significant processes in the control of the fate of diazinon in the soil are microbial degradation and the formation of bound residues. Soils from four sites in the UK were amended with diazinon and its ¹⁴C labelled analogue and incubated for 100 days. After 0, 10, 21, 50 and 100 days, the formation of bound residues was assessed by solvent extraction, and the microbial degradation of diazinon by mineralisation assay. In microbially active soils, diazinon is degraded rapidly, reducing the risk of future pollution incidents. However, where there was limited mineralisation there was also significantly lower formation of bound residues, which may lead to water pollution via leaching. The formation of bound residues was dependent on extraction type. Acetonitrile extraction identified bound residues in all soils, with the bound residue fraction increasing with increasing incubation time.
اظهر المزيد [+] اقل [-]Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK
2011
Gozzard, E. | Mayes, W.M. | Potter, H.A.B. | Jarvis, A.P.
Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety – a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead–zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows.
اظهر المزيد [+] اقل [-]Contrasting controls on arsenic and lead budgets for a degraded peatland catchment in Northern England
2011
Rothwell, James J. | Taylor, Kevin G. | Evans, M. G. (Martin G.) | Allott, Timothy E.H.
Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha⁻¹ y⁻¹ and 60.4 ± 10.5 gAs ha⁻¹ y⁻¹), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters.
اظهر المزيد [+] اقل [-]