خيارات البحث
النتائج 1 - 10 من 162
Road salt compromises functional morphology of larval gills in populations of an amphibian النص الكامل
2022
Szeligowski, Richard V. | Scanley, Jules A. | Broadbridge, Christine C. | Brady, Steven P.
Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts—where ionoregulation and gas exchange occur—and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.
اظهر المزيد [+] اقل [-]Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: The gut-lung axis النص الكامل
2022
Keulers, Loret | Dehghani, Ali | Knippels, Leon | Garssen, J. | Papadopoulos, Nikolaos | Folkerts, Gert | Braber, Saskia | van Bergenhenegouwen, Jeroen
Air pollution exposure is a public health emergency, which attributes globally to an estimated seven million deaths on a yearly basis We are all exposed to air pollutants, varying from ambient air pollution hanging over cities to dust inside the home. It is a mixture of airborne particulate matter and gases that can be subdivided into three categories based on particle diameter. The smallest category called PM₀.₁ is the most abundant. A fraction of the particles included in this category might enter the blood stream spreading to other parts of the body. As air pollutants can enter the body via the lungs and gut, growing evidence links its exposure to gastrointestinal and respiratory impairments and diseases, like asthma, rhinitis, respiratory tract infections, Crohn's disease, ulcerative colitis, and abdominal pain. It has become evident that there exists a crosstalk between the respiratory and gastrointestinal tracts, commonly referred to as the gut-lung axis. Via microbial secretions, metabolites, immune mediators and lipid profiles, these two separate organ systems can influence each other. Well-known immunomodulators and gut health stimulators are probiotics, prebiotics, together called synbiotics. They might combat air pollution-induced systemic inflammation and oxidative stress by optimizing the microbiota composition and microbial metabolites, thereby stimulating anti-inflammatory pathways and strengthening mucosal and epithelial barriers. Although clinical studies investigating the role of probiotics, prebiotics, and synbiotics in an air pollution setting are lacking, these interventions show promising health promoting effects by affecting the gastrointestinal- and respiratory tract. This review summarizes the current data on how air pollution can affect the gut-lung axis and might impact gut and lung health. It will further elaborate on the potential role of probiotics, prebiotics and synbiotics on the gut-lung axis, and gut and lung health.
اظهر المزيد [+] اقل [-]Biomass-related PM2.5 induces mitochondrial fragmentation and dysfunction in human airway epithelial cells النص الكامل
2022
Gao, Mi | Liang, Chunxiao | Hong, Wei | Yu, Xiaoyuan | Zhou, Yumin | Sun, Ruiting | Li, Haiqing | Huang, Haichao | Gan, Xuhong | Yuan, Ze | Zhang, Jiahuan | Chen, Juan | Mo, Qiudi | Wang, Luyao | Lin, Biting | Li, Bing | Ran, Pixin
The use of biomass for cooking and heating is considered an important factor associated with chronic obstructive pulmonary disease (COPD), but few studies have previously addressed its underlying mechanisms. Therefore, this research aimed to evaluate the effects of biomass-related PM₂.₅ (BRPM₂.₅) exposure on 16HBE human airway epithelial cells and in mice with regard to mitochondrial dysfunction. Our study indicated that BRPM₂.₅ exposure of 16HBE cells resulted in mitochondrial dysfunction, including decreased mitochondrial membrane potential, increased expression of fission proteins-phospho-DRP1, increased mitochondrial ROS (mtROS), and decreased levels of ATP. BRPM₂.₅ altered the mitochondrial metabolism of 16HBE cells by decreasing mitochondrial oxygen consumption and glycolysis. However, Mitochondria targeted peptide SS-31 eliminated mitochondrial ROS and alleviated the ATP deficiency and proinflammatory cytokines release. BRPM2.5 exposure resulted in abnormal mitochondrial morphological alterations both in 16HBE and in lung tissue. Taken together, these results suggest that BRPM₂.₅ has detrimental effects on human airway epithelial cells, leading to mitochondrial dysfunction, abnormal mitochondrial metabolism and altered mitochondrial dynamics. The present study provides the first evidence that disruption of mitochondrial structure and mitochondrial metabolism may be one of the mechanisms of BRPM₂.₅-induced respiratory dysfunction.
اظهر المزيد [+] اقل [-]Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen النص الكامل
2022
Akiyama Kitamura, Rafael Shinji | Vicentini, Maiara | Perussolo, Maiara Carolina | Lirola, Juliana Roratto | Cirilo dos Santos, Camilla Freitas | Moreira Brito, Júlio César | Cestari, Marta Margarete | Prodocimo, Maritana Mela | Gomes, Marcelo Pedrosa | Silva de Assis, Helena Cristina
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L⁻¹) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L⁻¹. In addition, at 100 μg.L⁻¹, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
اظهر المزيد [+] اقل [-]Microplastic pollution in fragile coastal ecosystems with special reference to the X-Press Pearl maritime disaster, southeast coast of India النص الكامل
2022
Karthik, R. | Robin, R.S. | Purvaja, R. | Karthikeyan, V. | Subbareddy, B. | Balachandar, K. | Hariharan, G. | Ganguly, D. | Samuel, V.D. | Jinoj, T.P.S. | Ramesh, R.
Microplastics (MPs) are a global environmental concern and pose a serious threat to marine ecosystems. This study aimed to determine the abundance and distribution of MPs in beach sediments (12 beaches), marine biota (6 beaches) and the influence of microbes on MPs degradation in eco-sensitive Palk Bay and Gulf of Mannar coast. The mean MP abundance 65.4 ± 39.8 particles/m² in beach sediments; 0.19 ± 1.3 particles/individual fish and 0.22 ± 0.11 particles g⁻¹ wet weight in barnacles. Polyethylene fragments (33.4%) and fibres (48%) were the most abundant MPs identified in sediments and finfish, respectively. Histopathological examination of fish has revealed health consequences such as respiratory system damage, epithelial degradation and enterocyte vacuolization. In addition, eight bacterial and seventeen fungal strains were isolated from the beached MPs. The results also indicated weathering of MPs due to microbial interactions. Model simulations helped in tracking the fate and transboundary landfall of spilled MPs across the Indian Ocean coastline after the X-Press Pearl disaster. Due to regional circulations induced by the monsoonal wind fields, a potential dispersal of pellets has occurred along the coast of Sri Lanka, but no landfall and ecological damage are predicted along the coast of India.
اظهر المزيد [+] اقل [-]Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) النص الكامل
2022
González-Doncel, Miguel | García-Mauriño, José Enrique | Beltrán, Eulalia María | Fernández Torija, Carlos | Andreu-Sánchez, Oscar | Pablos, María Victoria
The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
اظهر المزيد [+] اقل [-]Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis النص الكامل
2021
Fu, Lin | Zhao, Hui | Xiang, Ying | Xiang, Hui-Xian | Hu, Biao | Tan, Zhu-Xia | Lu, Xue | Gao, Lan | Wang, Bo | Wang, Hua | Zhang, Cheng | Xu, De-Xiang
1-Nitropyrene (1-NP) is one component of atmospheric fine particles. Previous report revealed that acute 1-NP exposure induced respiratory inflammation. This study aimed to investigate whether chronic 1-NP exposure induces pulmonary fibrosis. Male C57BL6/J mice were intratracheally instilled to 1-NP (20 μg/mouse/week) for 6 weeks. Diffuse interstitial inflammation, a-smooth muscle actin (a-SMA)-positive cells, a marker of epithelial-mesenchymal transition (EMT), and an extensive collagen deposition, measured by Masson staining, were observed in 1-NP-exposed mouse lungs. Pulmonary function showed that lung dynamic compliance (Cydn-min) was reduced in 1-NP-exposed mice. Conversely, inspiratory resistance (Ri) and expiratory resistance (Re) were elevated in 1-NP-exposed mice. Mechanistically, cell migration and invasion were accelerated in 1-NP-exposed pulmonary epithelial cells. In addition, E-cadherin, an epithelial marker, was downregulated, and vimentin, a-SMA and N-cadherin, three mesenchymal markers, were upregulated in 1-NP-exposed pulmonary epithelial cells. Although TGF-β wasn’t altered, phosphorylated Smad2/3 were enhanced in 1-NP-exposed pulmonary epithelial cells. Moreover, reactive oxygen species (ROS) were increased and endoplasmic reticulum (ER) stress was activated in 1-NP-exposed pulmonary epithelial cells. N-Acetylcysteine (NAC), an antioxidant, attenuated 1-NP-evoked excess ROS, ER stress and EMT in pulmonary epithelial cells. Similarly, pretreatment with NAC alleviated 1-NP-caused pulmonary EMT and lung fibrosis in mice. These results demonstrate that ROS-evoked ER stress contributes, at least partially, to 1-NP-induced EMT and pulmonary fibrosis.
اظهر المزيد [+] اقل [-]Alveolar epithelial inter-alpha-trypsin inhibitor heavy chain 4 deficiency associated with senescence-regulated apoptosis by air pollution النص الكامل
2021
Chen, Xiao-Yue | Feng, Po-Hao | Han, Chia-Li | Jheng, Yu-Teng | Wu, Chih-Da | Chou, Hsiu-Chu | Chen, Yi-Ying | Wu, Sheng-Ming | Lee, Kang-Yun | Kuo, Han-Pin | Chung, Kian Fan | Hsiao, Ta-Chih | Chen, Kuan-Yuan | Ho, Shu-Chuan | Chang, T. Y. (Ta-Yuan) | Chuang, Hsiao-Chi
Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) is a type II acute-phase protein; however, the role of pulmonary ITIH4 after exposure to air pollution remains unclear. In this study, we investigated the role of ITIH4 in the lungs in response to air pollution. ITIH4 expression in bronchoalveolar lavage fluid (BAL) of 47 healthy human subjects and of Sprague-Dawley rats whole-body exposed to air pollution was determined, and the underlying antiapoptotic and matrix-stabilizing pathways in alveolar epithelial A549 cells induced by diesel exhaust particles (DEPs) as well as ITIH4-knockdown were investigated. We found that an interquartile range (IQR) increase in PM₂.₅ was associated with a decrease of 2.673 ng/mL in ITIH4, an increase of 1.104 pg/mL of 8-isoprostane, and an increase of 6.918 pg/mL of interleukin (IL)-6 in human BAL. In rats, increases in 8-isoprostane, IL-6, and p53 and a decrease in sirtuin-1 (Sirt1) in the lungs and decreases in ITIH4 in the BAL, lungs, and serum were observed after PM₂.₅ and gaseous exposure. ITIH4 levels in lung lysates were correlated with levels in BAL samples (r = 0.377, p < 0.01), whereas ITIH4 levels in BAL were correlated with IL-6 levels (r = −0.420, p < 0.01). ITIH4 expression was significantly reduced in alveolar epithelial A549 cells by DEP in a dose-dependent manner. A decrease in Sirt1 and increases in phosphorylated extracellular signal-regulated kinase (p-ERK) and caspase-3 were observed after DEP exposure and ITIH4-knockdown. In conclusion, air pollution decreased ITIH4 expression in the lungs, which was associated with alveolar epithelial cell senescence and apoptosis. ITIH4 could be a vital protein in regulating alveolar cell destruction and its inhibition after exposure to air pollution.
اظهر المزيد [+] اقل [-]Biological, histological and immunohistochemical studies on the toxicity of spent coffee grounds and caffeine on the larvae of Aedes aegypti (Diptera: Culicidae) النص الكامل
2021
Miranda, Franciane Rosa | Fernandes, Kenner Morais | Bernardes, Rodrigo Cupertino | Martins, Gustavo Ferreira
The mosquito Aedes aegypti is a primary vector for major arboviruses, and its control is mainly based on the use of insecticides. Caffeine and spent coffee grounds (CG) are potential agents in controlling Ae. aegypti by reducing survival and blocking larval development. In this study, we analyzed the effects of treatment with common CG (CCG: with caffeine), decaffeinated CG (DCG: with low caffeine), and pure caffeine on the survival, behavior, and morphology of the midgut of Ae. aegypti under laboratory conditions. Third instar larvae (L3) were exposed to different concentrations of CCG, DCG, and caffeine. All compounds significantly affected larval survival, and sublethal concentrations reduced larval locomotor activity, delayed development, and reduced adult life span. Damage to the midgut of treated larvae included changes in epithelial morphology, increased number of peroxidase-positive cells (more abundant in DCG-treated larvae), and caspase 3-positive cells (more abundant in CCG-treated larvae), suggesting that the treatments triggered cell damage, leading to activation of cell death. In addition, the treatments reduced the FMRFamide-positive enteroendocrine cells and dividing cells compared to the control. CG and caffeine have larvicidal effects on Ae. aegypti that warrant field testing for their potential to control mosquitoes.
اظهر المزيد [+] اقل [-]Exposure to fipronil induces cell cycle arrest, DNA damage, and apoptosis in porcine trophectoderm and endometrial epithelium, leading to implantation defects during early pregnancy النص الكامل
2021
Park, Wonhyoung | Lim, Whasun | Song, Gwonhwa
Fipronil, a phenyl-pyrazole insecticide, has a wide range of uses, from agriculture to veterinary medicine. Due to its large-scale applications, the risk of environmental and occupational exposure and bioaccumulation raises concerns. Moreover, relatively little is known about the intracellular mechanisms of fipronil in trophoblasts and the endometrium involved in implantation. Here, we demonstrated that fipronil reduced the viability of porcine trophectoderm and luminal epithelial cells. Fipronil induced cell cycle arrest at the sub-G1 phase and apoptotic cell death through DNA fragmentation and inhibition of DNA replication. These reactions were accompanied by homeostatic changes, including mitochondrial depolarization and cytosolic calcium depletion. In addition, we found that exposure to fipronil compromised the migration and implantation ability of pTr and pLE cells. Moreover, alterations in PI3K-AKT and MAPK-ERK1/2 signal transduction were observed in fipronil-treated pTr and pLE cells. Finally, the antiproliferative and apoptotic effects of fipronil were also demonstrated in 3D cell culture conditions. In summary, our results suggest that fipronil impairs implantation potentials in fetal trophectoderm and maternal endometrial cells during early pregnancy.
اظهر المزيد [+] اقل [-]