خيارات البحث
النتائج 1 - 10 من 75
Analysis and occurrence of macrolide residues in stream sediments and underlying alluvial aquifer downstream from a pharmaceutical plant
2021
Senta, Ivan | Terzic, Senka | Ahel, Marijan
Macrolide antibiotics azithromycin (AZI), erythromycin (ERY) and clarithromycin (CLA) have been recently included in the EU Watch List of contaminants of emerging concern in the aquatic environment. However, their comprehensive assessment in different environmental compartments, by including synthesis intermediates, by-products and transformation products, is still missing. In this work, a novel method, based on pressurized liquid extraction and liquid chromatography–tandem mass spectrometry, was developed and validated for the determination of such an extended range of macrolide residues in sediment and soil samples at low ng/g levels. The method was applied to determine distribution of 13 macrolides in surface and alluvial aquifer sediments collected in a small stream with a history of chronic exposure to wastewater discharges from AZI production. The total concentrations of the target macrolide compounds in surface sediments were up to 29 μg/g and the most prominent individual macrolides were parent AZI, its synthesis intermediate N-demethyl AZI and transformation products decladinosyl AZI and N′-demethyl AZI. Some ERY-related compounds, originating from AZI synthesis, were also frequently detected, though at lower concentration levels (up to 0.31 ng/g in total). The distribution of macrolide residues in surface sediments indicated their active longitudinal transport by resuspension and redeposition of the contaminated sediment particles. The vertical concentration profiles in stream sediments and the underlying alluvial aquifer revealed that macrolide residues reached deeper alluvial sediments (up to 5 m). Moreover, significant levels of macrolides were found in groundwater samples below the streambed, with the total concentrations reaching up to 1.7 μg/L. This study highlights the importance of comprehensive chemical characterization of the macrolide residues, which were shown to persist in surface and alluvial aquifer sediment more than ten years after their discharge into the aquatic environment.
اظهر المزيد [+] اقل [-]Antibiotic and heavy metal resistance in enterococci from coastal marine sediment
2018
Vignaroli, Carla | Pasquaroli, Sonia | Citterio, Barbara | Di Cesare, Andrea | Mangiaterra, Gianmarco | Fattorini, Daniele | Biavasco, Francesca
Sediment samples from three coastal sites - two beach resorts (Beach 1 and Beach 2 sites) and an area lying between an oil refinery and a river estuary (Estuarine site) - were analyzed for antibiotic- and heavy metal (HM)-resistant enterococci.A total of 123 enterococci, 36 E. faecium, 34 E. casseliflavus, 33 E. hirae, 5 E. faecalis, 3 E. durans, 3 E. gallinarum, and 9 Enterococcus spp, were recovered. Strains resistant to erythromycin, tetracycline and quinupristin/dalfopristin (Q/D) were recovered from all sites, whereas multidrug-resistant isolates were recovered only from “Beach 2” (14%) and “Estuarine” (3.7%). As regards HM resistance, the strains showed a high frequency (68%) of cadmium and/or copper resistance and uniform susceptibility to mercury. The prevalence of cadmium-resistant strains was significantly higher among erythromycin-resistant than among erythromycin-susceptible strains. A significant association between cadmium or copper resistance and Q/D resistance was also observed at “Estuarine” site. The levels of the two HMs in sediment from all sites were fairly low, ranging from 0.070 to 0.126 μg/g, for cadmium and from 1.00 to 7.64 μg/g for copper. Mercury was always undetectable. These findings are consistent with reports that low HM concentrations may contribute to co-selection of antibiotic-resistant bacterial strains, including enterococci.
اظهر المزيد [+] اقل [-]Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards
2018
Schafhauser, Bruno Henrique | Kristofco, Lauren A. | de Oliveira, Cíntia Mara Ribas | Brooks, Bryan W.
Environmental observations of antibiotics and other pharmaceuticals have received attention as indicators of an urbanizing global water cycle. When connections between environment and development of antibiotic resistance (ABR) are considered, it is increasingly important to understand the life cycle of antibiotics. Here we examined the global occurrence of erythromycin (ERY) in: 1. wastewater effluent, inland waters, drinking water, groundwater, and estuarine and coastal systems; 2. sewage sludge, biosolids and sediments; and 3. tissues of aquatic organisms. We then performed probabilistic environmental hazard assessments to identify probabilities of exceeding the predicted no-effect concentration (PNEC) of 1.0 μg L−1 for promoting ABR, based on previous modeling of minimum inhibitory concentrations and minimal selective concentrations of ERY, and measured levels from different geographic regions. Marked differences were observed among geographic regions and matrices. For example, more information was available for water matrices (312 publications) than solids (97 publications). ERY has primarily been studied in Asia, North America and Europe with the majority of studies performed in China, USA, Spain and the United Kingdom. In surface waters 72.4% of the Asian studies have been performed in China, while 85.4% of the observations from North America were from the USA; Spain represented 41.9% of the European surface water studies. Remarkably, results from PEHAs indicated that the likelihood of exceeding the ERY PNEC for ABR in effluents was markedly high in Asia (33.3%) followed by Europe (20%) and North America (17.8%). Unfortunately, ERY occurrence data is comparatively limited in coastal and marine systems across large geographic regions including Southwest Asia, Eastern Europe, Africa, and Central and South America. Future studies are needed to understand risks of ERY and other antibiotics to human health and the environment, particularly in developing regions where waste management systems and treatment infrastructure are being implemented slower than access to and consumption of pharmaceuticals is occurring.
اظهر المزيد [+] اقل [-]Transfer of antibiotics from wastewater or animal manure to soil and edible crops
2017
Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log Kow), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels.
اظهر المزيد [+] اقل [-]Nutrients versus emerging contaminants–Or a dynamic match between subsidy and stress effects on stream biofilms
2016
Aristi, I. | Casellas, M. | Elosegi, A. | Insa, S. | Petrovic, M. | Sabater, S. | Acuña, V.
Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3–4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the experiment. Our results show that contaminants with a subsidy effect can alleviate the effects of toxic contaminants, and that long-term experiments are required to detect stress effects of emerging contaminants at environmentally relevant concentrations.
اظهر المزيد [+] اقل [-]Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA
2016
Schroeder, Anthony L. | Martinović-Weigelt, Dalma | Ankley, Gerald T. | Lee, K. E. (Kathy E.) | Garcia-Reyero, Natàlia | Perkins, Edward J. | Schoenfuss, Heiko L. | Villeneuve, Daniel L.
Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.
اظهر المزيد [+] اقل [-]Adverse effects of erythromycin on the structure and chemistry of activated sludge
2010
Louvet, J.N. | Giammarino, C. | Potier, O. | Pons, M.N.
This study examines the effects of erythromycin on activated sludge from two French urban wastewater treatment plants (WWTPs). Wastewater spiked with 10 mg/L erythromycin inhibited the specific evolution rate of chemical oxygen demand (COD) by 79% (standard deviation 34%) and the specific N–NH4+ evolution rate by 41% (standard deviation 25%). A temporary increase in COD and tryptophan-like fluorescence, as well as a decrease in suspended solids, were observed in reactors with wastewater containing erythromycin. The destruction of activated sludge flocs was monitored by automated image analysis. The effect of erythromycin on nitrification was variable depending on the sludge origin. Erythromycin inhibited the specific nitrification rate in sludge from one WWTP, but increased the nitrification rate at the other facility. Erythromycin toxicity on activated sludge is expected to reduce pollution removal.
اظهر المزيد [+] اقل [-]Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India
2022
Gupta, Sonia | Graham, David W. | Sreekrishnan, T.R. | Ahammad, Shaikh Ziauddin
Heavy metal pollution and the potential for co-selection of resistance to antibiotics in the environment is growing concern. However, clear associations between heavy metals and antibiotic resistance in river systems have not been developed. Here we investigated relationships between total and bioavailable heavy metals concentrations; metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances; mobile genetic elements; and the composition of local bacterial communities in low and high metal polluted rivers in UK and India. The results indicated that MRGs conferring resistance to cobalt (Co) and nickel (Ni) (rcnA), and Co, zinc (Zn), and cadmium (Cd) (czcA), and ARGs conferring resistance to carbapenem and erythromycin were the dominating resistant genes across the samples. The relative MRGs, ARGs, and integrons abundances tended to increase at high metal polluted environments, suggesting high metals concentrations have a strong potential to promote metal and antibiotic resistance by horizontal gene transmission and affecting bacterial communities, leading to the development of multi-metal and multi-antibiotic resistance. Network analysis demonstrated the positive and significant relationships between MRGs and ARGs as well as the potential for integrons playing a role in the co-transmission of MRGs and ARGs (r > 0.80, p < 0.05). Additionally, the major host bacteria of various MRGs and ARGs that could be accountable for greater MRGs and ARGs levels at high metal polluted environments were also identified by network analysis. Spearman's rank-order correlations and RDA analysis further confirm relationships between total and bioavailable heavy metals concentrations and the relative MRG, ARG, and integron abundances, as well as the composition of related bacterial communities (r > 0.80 (or < −0.80), p < 0.05). These findings are critical for assessing the possible human health concerns associated with metal-driven antibiotic resistance and highlight the need of considering metal pollution for developing appropriate measures to control ARG transmission.
اظهر المزيد [+] اقل [-]Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017
2020
Duan, Lei | Zhang, Yizhe | Wang, Bin | Cagnetta, Giovanni | Deng, Shubo | Huang, Jun | Wang, Yujue | Yu, Gang
Pharmaceutically active compounds (PhACs) are widely found in the environment due to vast human consumption. Lots of work has been devoted to investigating the occurrence and seasonal variations globally. To fully understand characteristics and cross-year variation of PhACs in Beijing, 35 PhACs were analyzed in 46 sites across Beijing from both urban and suburban areas. Concentrations of target PhACs were ranged from levels of ng L⁻¹ to μg L⁻¹. Metoprolol (524 ng L⁻¹), caffeine (390 ng L⁻¹) and acetaminophen (156 ng L⁻¹) were the three most abundant non-antibiotics with the highest median concentration, and nalidixic acid (135 ng L⁻¹), erythromycin (64 ng L⁻¹) and sulfamethoxazole (77 ng L⁻¹) were the most abundant antibiotics. Urban and suburban areas are distinguished by PhAC composition in cluster analysis due to different wastewater collection rate. The ratio of easily removable compound group and hardly removable group was then proposed to reflect the wastewater collection rate. The compositional comparison of PhACs in WWTPs’ effluents and their receiving rivers further illustrates the impact of WWTPs in urban area. Higher proportion of antibiotics (>30%) in suburban area reflected the impact of presence of livestock farms, which should be concerned. Further statistical analyses show an improving trend of wastewater collection rate, and excluding metoprolol, an anti-hypertension medicine, the total concentration of 13 target PhACs was reduced by 72% during 2013–2017.
اظهر المزيد [+] اقل [-]Expression of resistance genes instead of gene abundance are correlated with trace levels of antibiotics in urban surface waters
2019
Yi, Xinzhu | Lin, Chenghui | Ong, Eugene Jie Li | Wang, Mian | Li, Bolin | Zhou, Zhi
In this study, antibiotic resistance to macrolide-lincosamide-streptogramin B (MLSB) antibiotics in total microbial community in surface water in a coastal urban city was measured using a modified fluorescence in situ hybridization (FISH) technique. This FISH technique quantified the rate of antibiotic resistance to MLSB antibiotics through targeting methylation site of A2058 of 23S rRNAs resulting from expressed erythromycin ribosome methylation (erm) genes. Correlations between the rates of MLSB resistance measured by FISH and macrolide concentrations was stronger than that between the relative abundance of erm genes and macrolide concentrations, especially in residential areas where the main detected antibiotics were macrolides. These results suggest that trace levels of antibiotics in environmental waters, which was as low as 40 ng L−1, may still play important roles in the development and spread of antibiotic resistance. Additionally, methylation as a result of erm gene expression, instead of erm gene abundance, was a better indicator of selective pressure of trace level macrolides. The rates of MLSB resistance varied significantly among land use types, suggesting that anthropogenic activities are important factors to select for erm gene expression in the environment. Microbial community analysis of representative surface water samples showed that relatively high rates of MLSB resistance were observed in Alphaproteobacteria (42%), Acidobacteria (36%), Bacteroidaceae (32%), Chloroflexi (27%), and Betaproteobacteria (20.2%).
اظهر المزيد [+] اقل [-]