خيارات البحث
النتائج 1 - 10 من 222
Novel methodology for identification and quantification of microplastics in biological samples
2022
Malafaia, Guilherme | da Luz, Thiarlem Marinho | Araújo, Amanda Pereira da Costa | Ahmed, Mohamed Ahmed Ibrahim | Rocha-Santos, Teresa | Barceló, Damià
Currently, the evidence of the ingestion of microplastics (MPs) by organisms or the accumulation in different environmental compartments has been achieved using several methodological procedures. However, its uses have not been standardized across studies. In this study, we aim to assess and validate a protocol that can be useful for optimizing the identification and quantification procedures of polyethylene microplastics (PE MPs) in biological samples. Initially, considering that numerous studies filter samples previously digested in cellulosic membranes for isolation and analysis of MPs, we evaluated whether washing these membranes with different reagents could contribute to the complete detachment of particles, as well as to their dispersion in the obtained solutions. However, none of the tested reagents (dimethyl sulfoxide, acetone, ethyl alcohol and chloroform), including purified water, was able to completely remove the MPs adhered to the membranes or facilitate their dispersion in the solutions. On the other hand, we observed that the digestion of the membranes by acetonitrile constituted a procedure that prevents the loss of particles due to adherence, in addition to promoting good dispersion of MPs. Subsequently, we evaluated the use of Neubauer chambers for the quantification of MPs, having observed a good recovery rate (>92%) and results with insignificant variation, in PE MPs solutions with different concentrations (0.15; 0.075 and 0.0375 mg/mL). Ultimately, the validation of the proposed procedures took place from the evaluation of the accumulation of PE MPs in Astyanax spp. juveniles, having demonstrated the efficiency and sensitivity of the method proposed for this purpose. Subsequently, our study provides a methodological alternative that can optimize MPs quantifications in biological samples and reduce the generation of biased or unreliable results.
اظهر المزيد [+] اقل [-]An innovative green protocol for the quantification of benzothiazoles, benzotriazoles and benzosulfonamides in PM10 using microwave-assisted extraction coupled with solid-phase microextraction gas chromatography tandem-mass spectrometry
2021
Naccarato, Attilio | Tassone, Antonella | Martino, Maria | Elliani, Rosangela | Sprovieri, Francesca | Pirrone, Nicola | Tagarelli, Antonio
Benzothiazoles (BTHs), benzotriazoles (BTRs), and benzenesulfonamides (BSAs) are chemicals used in several industrial and household applications. Despite these compounds are emerging pollutants, there is still a lack of information about their presence in outdoor air samples. In this paper, we developed a new method for the quantification of BTHs, BTRs, and BSAs in airborne particulate matter (PM₁₀). The extraction of fourteen analytes from PM₁₀ was accomplished by microwave-assisted extraction (MAE) using an environmentally friendly mixture of water and ethanol. SPME was used to analyze the target compounds from the MAE extract by gas chromatography-tandem mass spectrometry (SPME-GC-MS/MS), eliminating additional sample clean-up steps. The best working conditions for MAE and SPME were examined multivariately by experimental design techniques. The target compounds were quantified in selected reaction monitoring acquisition mode. The proposed method was carefully validated, and the achieved results were satisfactory in terms of linearity, lower limit of quantification (picograms per cubic meter), intra- and inter-day accuracy (81–118% and 82–114%, respectively), and precision (repeatability and reproducibility in the range 2.3–17% and 7.4–19%, respectively). The application in a real monitoring campaign showed that the developed protocol is a valuable and eco-friendly alternative to the methods proposed so far.
اظهر المزيد [+] اقل [-]Biomass utilization and production of biofuels from carbon neutral materials
2021
Srivastava, Rajesh K. | Shetti, Nagaraj P. | Reddy, Kakarla Raghava | Kwon, Eilhann E. | Nadagouda, Mallikarjuna N. | Aminabhavi, Tejraj M.
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world’s energy need by producing least amount of toxic gases (reduction up to 20–70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
اظهر المزيد [+] اقل [-]Application of biochar prepared from ethanol refinery by-products for Hg stabilization in floodplain soil: Impacts of drying and rewetting
2020
Wang, Alana O. | Ptacek, Carol J. | Paktunc, Dogan | Mack, E Erin | Blowes, David W.
This study evaluated three biochars derived from bioenergy by-products — manure-based anaerobic digestate (DIG), distillers’ grains (DIS), and a mixture thereof (75G25S) — as amendments to stabilize Hg in contaminated floodplain soil under long-term saturated (up to 200 d) and cyclic drying and rewetting conditions. Greater total Hg (THg) removal (72 to nearly 100%) and limited MeHg production (<65 ng L⁻¹) were observed in digestate-based biochar-amended systems under initial saturated conditions. Drying and rewetting resulted in limited THg release, increased aqueous MeHg, and decreased solid MeHg in digestate-based biochar-amended systems. Changes in Fe and S chemistry as well as microbial communities during drying and rewetting potentially affected MeHg production. Digestate-based biochars may be more effective as amendments to control Hg release and minimize MeHg production in floodplain soils under long-term saturated and drying and rewetting conditions compared to distillers’ grains biochar.
اظهر المزيد [+] اقل [-]A new experimental setup for measuring greenhouse gas and volatile organic compound emissions of silage during the aerobic storage period in a special silage respiration chamber
2020
Krommweh, Manuel S. | Schmithausen, Alexander J. | Deeken, Hauke F. | Büscher, Wolfgang | Maack, Gerd-Christian
The aim of this study was to develop a new experimental setup to determine parallel the emissions of greenhouse gases (GHG) and volatile organic compounds (VOCs) from silage during the opening as well as the subsequent aerobic storage phase of the complete bale without wrapping film. For this purpose, a special silage respiration chamber was used in which a silage bale could be examined. The gas analysis (CO₂, methanol, ethanol, ethyl acetate) of inlet, ambient and outlet air of the silage respiration chamber was carried out by photoacoustic spectroscopy. The gas samples taken inside the bale were analysed by gas chromatography for CO₂, O₂, CH₄, and N₂O. Three silage bales (grass and lucerne) as the smallest silage unit commonly used in practice were examined. The emission behaviour of the bales was recorded during experimental periods up to 55 days. The results allow a differentiation of the outgassing processes. On the one hand, gases produced during the anaerobic ensiling process (CO₂, CH₄, N₂O) are released once in a large amount during the first experimental hours after opening the silage. On the other hand, a continuous outgassing process takes place, which is particularly true for the VOCs ethanol, methanol, and ethyl acetate, whereby VOC emissions increase with rising ambient air temperatures. In this study, the emissions during the first 600 experimental hours from the grass silage bale and lucerne silage bale were 2313 g and 2612 g CO₂, 17.6 g and 145.2 g methanol, 132.3 g and 675.9 g ethanol, 55.1 g and 66.2 g ethyl acetate, respectively. Nevertheless, the focus of this study was on the technical recording of gas concentrations inside the silage bale itself and the emissions in the ambient air of the bale. For a better interpretation of the data, additional factors should be considered in further investigations.
اظهر المزيد [+] اقل [-]Peroxymonosulfate catalyzed by rGO assisted CoFe2O4 catalyst for removing Hg0 from flue gas in heterogeneous system
2019
Zhao, Yi | Nie, Guoxin | Ma, Xiaoying | Xu, Peiyao | Zhao, Xiaochu
The cobalt ferrite-reduced oxidized graphene (CoFe2O4/rGO) catalyst was synthesized by hydrothermal method and characterized by Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Brunauere Emmette Teller (BET) and Hysteresis loop. For developing a new method of removing elemental mercury (Hg0) from flue gas, the effects of catalyst dosage, PMS concentration, solution pH and reaction temperature on the removal efficiency were investigated experimentally by using peroxymonosulfate (PMS) catalyzed by CoFe2O4/rGO at a self-made bubbling reactor. The average removal efficiency of Hg0 in a 30-min period reached 95.56%, when CoFe2O4/rGO dosage was 0.288 g/L, PMS concentration was 3.5 mmol/L, solution pH was 5.5 and reaction temperature was 55 °C. Meanwhile, based on the free radical quenching experiments, in which, ethyl alcohol and tert butyl alcohol were used as quenchers to prove indirectly the presence of •OH and SO4•−, the characterizations of catalysts and reaction products, and the existing results from other scholars. The reaction mechanism was proposed.
اظهر المزيد [+] اقل [-]Dispersion-box modeling investigation of the influences of gasoline, diesel, M85 and E85 vehicle exhaust emission on photochemistry
2019
Gabay, Maor | Tas, Eran
Alternative transportation fuels (ATFs) can reduce air pollution. However, the influence of conventional fuels—diesel and gasoline, and particularly ATFs on photochemical air pollution is not well-characterized, limiting assessments of ATFs and air quality. This is mainly due to frequent use of lumped chemical mechanisms by related atmospheric modeling. Here we hypothesized that applying a chemical mechanism that is specifically developed according to both emission fractions and photochemical ozone creation potential of volatile organic compounds (VOCs) is key to gaining reliable insights into the impact of transportation fuels on photochemistry. We used a heterogeneous chemical mechanism with 927 reactions and relatively detailed emission inventories to specifically meet the requirements for reliable simulation of the effect of exhaust emissions from vehicles fueled by selected model fuels—diesel, gasoline, and mixtures of 15% gasoline with 85% ethanol (E85) or 85% methanol (M85)—on photochemistry. These dispersion-box model simulations revealed a strong influence of atmospheric background balance between VOCs and nitrogen oxides (NOX = [NO] + [NO2]) on the impact of exhaust emissions on photochemistry, with higher tendency toward ozone (O3) formation or destruction for more VOC-limited or NOX-limited conditions, respectively. Accordingly, higher [NOX]/[VOC] exhaust emission, such as from diesel and M85, resulted in lower O3, not only locally but also downwind of the emission. This offers a new perspective and measure for transportation fuel assessment. Rapid conversion of O3 to hydroxyl and hydroperoxyl radicals downwind of the exhaust emission indicates the importance of simulating the impact of road transportation on photochemistry at high spatial and temporal resolution. Peroxyacetyl nitrate formation was more sensitive to VOC emission under VOC-limited conditions than to NOX emission under NOX-limited conditions. Secondary formaldehyde dominated over primary emitted formaldehyde several minutes after emission. These findings should be verified using a 3D modeling study under varying meteorological conditions.
اظهر المزيد [+] اقل [-]Simultaneous determination of (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphate diester and triester and their biotransformation to perfluorooctanesulfonate in freshwater sediments
2018
Zhang, Shiyi | Peng, Hui | Mu, Di | Zhao, Haoqi | Hu, Jianying
While (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphates (SAmPAPs) have been proposed as a group of perfluorooctanesulfonate (PFOS) precursors, investigation of their occurrence and fate has been limited to SAmPAP diester. In this study, SAmPAP diester and triester were simultaneously determined in freshwater sediment from Taihu Lake using a newly developed UPLC-MS/MS method, and their biotransformation to PFOS in lake sediment was investigated. SAmPAP diester and triester were detected in sediments with a detection frequency of 56% and 88%, and their mean concentrations were 0.24 ± 0.11 ng/g dry weight (dw) and 0.12 ± 0.03 ng/g dw, respectively. The SAmPAP diester/triester ratio in sediment was 1.1 ± 4.2, much lower than that (6.7) observed in the technical product, and the positive correlation was found between the concentrations of SAmPAP diester and PFOS in sediments (r² = 0.45, p = 0.01), suggesting that SAmPAP diester would be biotransformed to PFOS in the lake sediment. The microbial degradation test in the lake sediments further clarified that SAmPAP diester was biodegraded to PFOS, but SAmPAP triester was highly recalcitrant to microbial degradation. This study suggests that the occurrence of SAmPAP diester in freshwater lake sediments may be an important precursor of PFOS.
اظهر المزيد [+] اقل [-]Paper-disc method: An efficient assay for evaluating metal toxicity to soil algae
2016
The probabilistic ecological risk assessment using terrestrial toxicity data has been mainly based on microfauna or mesofauna. Soil algae, which are food source for microfauna and mesofauna, may be alternatively used for assessing soil toxicity. However, there are no internationally recommended guidelines for soil algal bioassays, and the collection of algae from the test soils has some limitations. In this study, we suggested the paper-disc method as an easy-to-use alternative. This method has been widely used for testing the antibacterial toxicity of various chemicals in agar media by measuring the diameter of the inhibition zone around the disc. We adapted the paper-disc method for screening the toxicity of copper (Cu) and nickel (Ni) to the soil alga Chlorococcum infusionum using various evaluation endpoints, such as growth zone, chlorophyll fluorescence, and photosynthetic activity. Chlorophyll fluorescence and photosynthetic activity decreased with the increasing concentrations of Cu+2 or Ni+2 contaminated soils. Algal growth zone was analyzed visually and showed similar results to those of chlorophyll fluorescence. The direct ethanol extraction method and indirect culture medium extraction method were similarly effective; however, the former was easier to perform, while the latter might facilitate the analysis of additional endpoints in future studies. Overall, the results suggested that the paper-disc method was not only a user-friendly assay for screening soil toxicity, but also effective due to its association with indirect soil quality indicators.
اظهر المزيد [+] اقل [-]Warming increases methylmercury production in an Arctic soil
2016
Yang, Ziming | Fang, Wei | Lu, Xia | Sheng, Guo-Ping | Graham, David E. | Liang, Liyuan | Wullschleger, Stan D. | Gu, Baohua
Rapid temperature rise in Arctic permafrost impacts not only the degradation of stored soil organic carbon (SOC) and climate feedback, but also the production and bioaccumulation of methylmercury (MeHg) toxin that can endanger humans, as well as wildlife in terrestrial and aquatic ecosystems. Currently little is known concerning the effects of rapid permafrost thaw on microbial methylation and how SOC degradation is coupled to MeHg biosynthesis. Here we describe the effects of warming on MeHg production in an Arctic soil during an 8-month anoxic incubation experiment. Net MeHg production increased >10 fold in both organic- and mineral-rich soil layers at warmer (8 °C) than colder (−2 °C) temperatures. The type and availability of labile SOC, such as reducing sugars and ethanol, were particularly important in fueling the rapid initial biosynthesis of MeHg. Freshly amended mercury was more readily methylated than preexisting mercury in the soil. Additionally, positive correlations between mercury methylation and methane and ferrous ion production indicate linkages between SOC degradation and MeHg production. These results show that climate warming and permafrost thaw could potentially enhance MeHg production by an order of magnitude, impacting Arctic terrestrial and aquatic ecosystems by increased exposure to mercury through bioaccumulation and biomagnification in the food web.
اظهر المزيد [+] اقل [-]