خيارات البحث
النتائج 1 - 2 من 2
Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries
2015
Chariton, Anthony A. | Stephenson, Sarah | Morgan, Matthew J. | Steven, Andrew D.L. | Colloff, Matthew J. | Court, Leon N. | Hardy, Christopher M.
DNA-derived measurements of biological composition have the potential to produce data covering all of life, and provide a tantalizing proposition for researchers and managers. We used metabarcoding to compare benthic eukaryote composition from five estuaries of varying condition. In contrast to traditional studies, we found biotic richness was greatest in the most disturbed estuary, with this being due to the large volume of extraneous material (i.e. run-off from aquaculture, agriculture and other catchment activities) being deposited in the system. In addition, we found strong correlations between composition and a number of environmental variables, including nutrients, pH and turbidity. A wide range of taxa responded to these environmental gradients, providing new insights into their sensitivities to natural and anthropogenic stressors. Metabarcoding has the capacity to bolster current monitoring techniques, enabling the decisions regarding ecological condition to be based on a more holistic view of biodiversity.
اظهر المزيد [+] اقل [-]Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants
2020
Masiá, Paula | Sol, Daniel | Ardura, Alba | Laca, Amanda | Borrell, Yaisel J. | Dopico, Eduardo | Laca, Adriana | Machado-Schiaffino, Gonzalo | Díaz, Mario | García Vázquez, Eva
Microplastics (MPs) attract ever-increasing attention due to environmental concerns. Nowadays, they are ubiquitous across ecosystems, and research demonstrates that the origin is mainly terrestrial. Wastewater treatment plants (WWTPs) are a major source of MPs, especially fibres, in water masses. This review is focused on understanding the evolution and fate of microplastics during wastewater treatment processes with the aim of identifying advanced technologies to eliminate microplastics from the water stream. Among them, bioremediation has been highlighted as a promising tool, but confinement of microorganisms inside the WWTP is still a challenge. The potential for MPs bioremediation in WWTPs of higher aquatic eukaryotes, which offer the advantages of low dispersion rates and being easy to contain, is reviewed. Animals, seagrasses and macrophytes are considered, taking into account ecoethical and biological issues. Necessary research and its challenges have been identified.
اظهر المزيد [+] اقل [-]