خيارات البحث
النتائج 1 - 10 من 171
Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury
2022
Jin, Han | Riaz Rajoka, Muhammad Shahid | Xu, Xiaoguang | Liao, Ning | Pang, Bing | Yan, Lu | Liu, Guanwen | Sun, Hui | Jiang, Chunmei | Shao, Dongyan | Barba, Francisco J. | Shi, Junling
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
اظهر المزيد [+] اقل [-]Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes
2022
Okamoto, Konori | Nomura, Miho | Horie, Yoshifumi | Okamura, Hideo
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
اظهر المزيد [+] اقل [-]Microbial engineering for the production and application of phytases to the treatment of the toxic pollutants: A review
2022
Zhou, Yuwen | Anoopkumar, A.N. | Tarafdar, Ayon | Madhavan, Aravind | Binoop, Mohan | Lakshmi, Nair M. | B, Arun K. | Sindhu, Raveendran | Binod, Parameswaran | Sirohi, Ranjna | Pandey, Ashok | Zhang, Zengqiang | Awasthi, Mukesh Kumar
Phytases are a group of digestive enzymes which are commonly used as feed enzymes. These enzymes are used exogenously in the feeds of monogastric animals thereby it improves the digestibility of phosphorous and thus reduces the negative impact of inorganic P excretion on the environment. Even though these enzymes are widely distributed in many life forms, microorganisms are the most preferred and potential source of phytase. Despite the extensive availability of the phytase-producing microbial consortia, only a few microorganisms have been known to be exploited at industrial level. The high costs of the enzyme along with the incapability to survive high temperatures followed by the poor storage stability are noted to be the bottleneck in the commercialization of enzymes. For this reason, besides the conventional fermentation approaches, the applicability of cloning, expression studies and genetic engineering has been implemented for the past few years to accomplish the abovesaid benefits. The site-directed mutagenesis as well as knocking out have also validated their prominent role in microbe-based phytase production with enhanced levels. The present review provides detailed information on recent insights on the modification of phytases through heterologous expression and protein engineering to make thermostable and protease-resistant phytases.
اظهر المزيد [+] اقل [-]PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes
2022
Davidsen, Nichlas | Ramhøj, Louise | Lykkebo, Claus Asger | Kugathas, Indusha | Poulsen, Rikke | Rosenmai, Anna Kjerstine | Evrard, Bertrand | Darde, Thomas A. | Axelstad, Marta | Bahl, Martin Iain | Hansen, Martin | Chalmel, Frederic | Licht, Tine Rask | Svingen, Terje
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
اظهر المزيد [+] اقل [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to ¹⁰⁹Cd- or ⁶⁵Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L⁻¹ (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and ¹⁰⁹Cd or ⁶⁵Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7ᵗʰ day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
اظهر المزيد [+] اقل [-]Toxicokinetics and toxicodynamics of plastic and metallic nanoparticles: A comparative study in shrimp
2022
Zhu, Xiaopeng | Teng, Jia | Xu, Elvis Genbo | Zhao, Jianmin | Shan, Encui | Sun, Chaofan | Wang, Qing
Nanoplastic is recognized as an emerging environmental pollutant due to the anticipated ubiquitous distribution, increasing concentration in the ocean, and potential adverse health effects. While our understanding of the ecological impacts of nanoplastics is still limited, we benefit from relatively rich toxicological studies on other nanoparticles such as nano metal oxides. However, the similarity and difference in the toxicokinetic and toxicodynamic aspects of plastic and metallic nanoparticles remain largely unknown. In this study, juvenile Pacific white shrimp Litopenaeus vannamei was exposed to two types of nanoparticles at environmentally relative low and high concentrations, i.e., 100 nm polystyrene nanoplastics (nano-PS) and titanium dioxide nanoparticles (nano-TiO₂) via dietary exposure for 28 days. The systematic toxicological evaluation aimed to quantitatively compare the accumulation, excretion, and toxic effects of nano-PS and nano-TiO₂. Our results demonstrated that both nanoparticles were ingested by L. vannamei with lower egestion of nano-TiO₂ than nano-PS. Both nanoparticles inhibited the growth of shrimps, damaged tissue structures of the intestine and hepatopancreas, disrupted expression of immune-related genes, and induced intestinal microbiota dysbiosis. Nano-PS exposure caused proliferative cells in the intestinal tissue, and the disturbance to the intestinal microbes was also more serious than that of nano-TiO₂. The results indicated that the effect of nano-PS on the intestinal tissue of L. vannamei was more severe than that of nano-TiO₂ with the same particle size. The study provides new theoretical basis of the similarity and differences of their toxicity, and highlights the current lack of knowledge on various aspects of absorption, distribution, metabolism, and excretion (ADME) pathways of nanoplastics.
اظهر المزيد [+] اقل [-]Blood lead, vitamin D status, and albuminuria in patients with type 2 diabetes
2021
Wang, Bin | Wan, Heng | Cheng, Jing | Chen, Yingchao | Wang, Yuying | Chen, Yi | Chen, Chi | Zhang, Wen | Xia, Fangzhen | Wang, Ningjian | Wang, Li | Lu, Yingli
Environmental lead exposure has been linked with reduced kidney function. However, evidence about its role in diabetic kidney damage, especially when considering the nutritional status of vitamin D, is sparse. In this observational study, we investigated the association between low-level lead exposure and urinary albumin-to-creatinine ratio (UACR) and assessed potential impact of vitamin D among 4033 diabetic patients in Shanghai, China. Whole blood lead was measured by graphite furnace atomic absorption spectrometry. Serum 25-hydroxyvitamin D [25(OH)D] was tested using a chemiluminescence immunoassay. The associations of blood lead with UACR and albuminuria, defined as UACR ≥30 mg/g, according to 25(OH)D levels were analyzed using linear and Poisson regression models. A doubling of blood lead level was associated with a 10.7% higher UACR (95% CI, 6.19%–15.5%) in diabetic patients with 25(OH)D < 50 nmol/L, whereas the association was attenuated toward null (2.03%; 95% CI, −5.18% to 9.78%) in those with 25(OH)D ≥ 50 nmol/L. Similarly, the risk ratios of prevalent albuminuria per doubling of blood lead level between the two groups were 1.09 (95% CI, 1.03–1.15) and 0.99 (95% CI, 0.86–1.14), respectively. Joint analysis demonstrated that a combination of high blood lead and low 25(OH)D corresponded to significantly higher UACR. Among diabetic patients with 25(OH)D < 50 nmol/L, the increment of UACR relative to blood lead was more remarkable in those with reduced estimated glomerular filtration rate (<60 mL/min/1.73 m²). These results suggested that higher blood lead levels were associated with increased urinary albumin excretion in diabetic patients with vitamin D deficiency. Further prospective studies are needed to validate our findings and to determine whether vitamin D supplementation yields a benefit.
اظهر المزيد [+] اقل [-]Excretion from long glandular trichomes contributes to alleviation of cadmium toxicity in Nicotiana tabacum
2021
Zhang, Hongying | Lu, Xinyong | Wang, Zhaojun | Yan, Xiaoxiao | Cui, Hong
The B-type cyclin gene, CycB2, serves as a negative regulator of glandular trichome initiation. Through targeted knockout of NtCycB2 in Nicotiana tabacum cv. K326 using the CRISPR/Cas9 system, we created a variety, HK326, which exhibits significantly increased density and larger glandular heads of long glandular trichomes. Under Cd-stress, HK326 exhibited enhanced Cd tolerance, as demonstrated by a robust root system, strengthened cell membrane stability, and higher photosynthetic parameters. HK326 exhibited enhanced Cd-stress tolerance due to a strong excretion capacity of long glandular trichomes by forming calcium oxalate crystals. Cd mainly accumulated in tobacco shoots rather than remained in roots. Specifically, Cd levels of the HK326 shoot surface were nearly two-fold of those of K326, resulting in less Cd internally in the roots and shoots. Gene expression patterns revealed 11 Cd transporter genes that were upregulated after Cd-stress in shoots, roots, and trichomes. Among them, the NtHMA2 gene encoding heavy metal ATPases and involved in the transport of divalent heavy metal cations was expressed consistently and significantly higher in HK326 than K326, both before and after Cd-stress. NtHMA2 expression was strong in trichomes, moderate in shoots, while weak in roots. The results indicate that NtHMA2 may be involved in Cd excretion from glandular trichomes. Our findings suggest HK326 may be an appropriate candidate plant for Cd-stress tolerance.
اظهر المزيد [+] اقل [-]Nontarget analysis reveals gut microbiome-dependent differences in the fecal PCB metabolite profiles of germ-free and conventional mice
2021
Li, Xueshu | Liu, Yanna | Martin, Jonathan W. | Cui, Julia Yue | Lehmler, Hans-Joachim
Mammalian polychlorinated biphenyl (PCB) metabolism has not been systematically explored with nontarget high-resolution mass spectrometry (Nt-HRMS). Here we investigated the importance of the gut microbiome in PCB biotransformation by Nt-HRMS analysis of feces from conventional (CV) and germ-free (GF) adult female mice exposed to a single oral dose of an environmental PCB mixture (6 mg/kg or 30 mg/kg in corn oil). Feces were collected for 24 h after PCB administration, PCB metabolites were extracted from pooled samples, and the extracts were analyzed by Nt-HRMS. Twelve classes of PCB metabolites were detected in the feces from CV mice, including PCB sulfates, hydroxylated PCB sulfates (OH-PCB sulfates), PCB sulfonates, and hydroxylated methyl sulfone PCBs (OH-MeSO₂-PCBs) reported previously. We also observed eight additional PCB metabolite classes that were tentatively identified as hydroxylated PCBs (OH-PCBs), dihydroxylated PCBs (DiOH-PCBs), monomethoxylated dihydroxylated PCBs (MeO-OH-PCBs), methoxylated PCB sulfates (MeO-PCB sulfates), mono-to tetra-hydroxylated PCB quinones ((OH)ₓ-quinones, x = 1–4), and hydroxylated polychlorinated benzofurans (OH-PCDF). Most metabolite classes were also detected in the feces from GF mice, except for MeO-OH-PCBs, OH-MeSO₂-PCBs, and OH-PCDFs. Semi-quantitative analyses demonstrate that relative PCB metabolite levels increased with increasing dose and were higher in CV than GF mice, except for PCB sulfates and MeO-PCB sulfates, which were higher in GF mice. These findings demonstrate that the gut microbiome plays a direct or indirect role in the absorption, distribution, metabolism, or excretion of PCB metabolites, which in turn may affect toxic outcomes following PCB exposure.
اظهر المزيد [+] اقل [-]Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China
2021
Zhu, Xiao | Shen, Jianlin | Li, Yong | Liu, Xuejun | Xu, Wen | Zhou, Feng | Wang, Juan | Reis, Stefan | Wu, Jinshui
The study of emissions and depositions of atmospheric reactive nitrogen species (Nᵣs) in a region is important to uncover the sources and sinks of atmospheric Nᵣs in the region. In this study, atmospheric total Nᵣs depositions including both wet-only and dry deposition were monitored simultaneously across major land-use types in a 105 km² catchment called Jinjing River Catchment (JRC) in subtropical central China from 2015 to 2016. Based on activity data and emission factors for the main Nᵣs emission sources, ammonia (NH₃) and nitrogen oxides (NOₓ) emission inventories for the catchment were also compiled. The estimated total Nᵣs deposition in JRC was 35.9 kg N ha⁻¹ yr⁻¹, with approximately 49.7 % attributed to reduced compounds (NHₓ), and 40.5 % attributed to oxidized (NOy). The total Nᵣs emission rate in JRC was 80.4 kg N ha⁻¹ yr⁻¹, with 61.5 and 18.9 kg N ha⁻¹ yr⁻¹ from NH₃ and NOₓ emissions, respectively. Livestock excretion and fertilization were the two main contributing emission sources for NH₃, while vehicle sources contributed the bulk of NOₓ emissions. The net atmospheric budgets of Nᵣs in paddy field, forest, and tea field were +3.7, −36.1, and +23.8 kg N ha⁻¹ yr⁻¹, respectively. At the catchment scale, the net atmospheric budget of Nᵣs was +47.7 kg N ha⁻¹ yr⁻¹, with +43.7 kg N ha⁻¹ yr⁻¹ of NHₓ and +4.0 kg N ha⁻¹ yr⁻¹ of NOy, indicating that the subtropical catchment was net sources of atmospheric Nᵣs. Considering that excessive atmospheric Nᵣ emissions and deposition may cause adverse effects on the environment, effects should be conducted to mitigate the Nᵣs emissions from agriculture and transportation, and increasing the area of forest is good for reducing the net positive budget of atmospheric Nᵣs in the subtropical catchments in China.
اظهر المزيد [+] اقل [-]