خيارات البحث
النتائج 1 - 10 من 32
Bioleaching of electronic waste
2021
Waghmode, M. S. | Gunjal, A. B. | Patil, N. N.
Increase in advanced electronic technology leads to environmental issues related with its disposal. Electronic waste i.e., video card and random access memory were used for studying extraction of precious metals using Paenibacillus sp. Metal contaminated soil was used for the isolation of exopolysaccharide producing strains. The isolate was identified as Paenibacillus sp. based on morphological, biochemical tests and 16S rRNA sequencing. Metal content analysis of soil and e-waste was carried out using X-ray Fluorescence spectroscopy. The vanadium element was more in the soil sample which was 0.487 mg/g and in electronic waste sample copper content was more which was 250 mg/g. Paenibacillus sp. produced capsule which was observed under bright, dark field and phase contrast microscope. Scanning electron microscopy was done for the study of morphological changes of exopolysaccharide producing Paenibacillus sp. in chitin broth and on chitin agar medium with and without e-waste. The Fourier Transform Infrared Spectroscopy analysis of exopolysaccharide produced by Paenibacillus sp. grown on chitin agar and chitin agar with e-waste showed presence of different functional groups. The one step and two step bioleaching experiments were carried out for testing efficacy of biomass on metal leaching. Paenibacillus sp. showed its potential for the extraction of precious metals viz., gold, silver and copper from electronic waste. Paenibacillus sp. recovered gold (0.001%), cadmium (45%), copper (50%), iron (46%), manganese (88%), palladium (56.9%) and zinc (87.12%) by two step fermentation. The study is useful for the bioleaching of precious metals from electronic waste.
اظهر المزيد [+] اقل [-]Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
اظهر المزيد [+] اقل [-]Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize
2022
Zhang, Hao | Qian, Yingying | Fan, Dandan | Tian, Yanning | Huang, Xing
Bensulfuron-methyl (BSM) residues in soil threaten the rotation of BSM-sensitive crops. Microbial biofilms formed on crop roots could improve the ability of microbes to survive and protect crop roots. However, the research on biofilms with the purpose of mitigating or even eliminating BSM damage to sensitive crops is very limited. In this study, one BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, colonized maize roots by forming a biofilm. Root exudates were associated with increased BSM degradation efficiency with strain S113 in rhizosphere soil relative to bulk soil, so the interactions among BSM degradation, root exudates, and biofilms may provide a new approach for the BSM-contaminated soil bioremediation. Root exudates and their constituent organic acids, including fumaric acid, tartaric acid, and l-malic acid, enhanced biofilm formation with 13.0–22.2% increases, owing to the regulation of genes encoding proteins responsible for cell motility/chemotaxis (fla/che cluster) and materials metabolism, thus promoting S113 population increases. Additionally, root exudates were also able to induce exopolysaccharide production to promote mature biofilm formation. Complete BSM degradation and healthy maize growth were found in BSM-contaminated rhizosphere soil treated with wild strain S113, compared to that treated with loss-of-function mutants ΔcheA-S113 (89.3%, without biofilm formation ability) and ΔsulE-S113 (22.1%, without degradation ability) or sterile water (10.7%, control). Furthermore, the biofilm mediated by organic acids, such as l-malic acid, exhibited a more favorable effect on BSM degradation and maize growth. These results showed that root exudates and their components (such as organic acids) can induce the biosynthesis of the biofilm to promote BSM degradation, emphasizing the contribution of root biofilm in reducing BSM damage to maize.
اظهر المزيد [+] اقل [-]Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type
2016
Lagarde, Fabienne | Olivier, Ophélie | Zanella, Marie | Daniel, Philippe | Hiard, Sophie | Caruso, Aurore
In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment.
اظهر المزيد [+] اقل [-]Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate
2021
Borah, Siddhartha Narayan | Goswami, Lalit | Sen, Suparna | Sachan, Deepa | Sarma, Hemen | Montes Castillo, Milka Odemariz | Peralta-Videa, Jose R. | Pakshirajan, Kannan | Narain, Mahesh
A native strain of Bacillus paramycoides isolated from the leachate of coal mine overburden rocks was investigated for its potential to produce selenium nanoparticles (SeNPs) by biogenic reduction of selenite, one of the most toxic forms of selenium. 16S rDNA sequencing was used to identify the bacterial strain (SP3). The SeNPs were characterized using spectroscopic (UV–Vis absorbance, dynamic light scattering, X-ray diffraction, and Raman), surface charge measurement (zeta potential), and ultramicroscopic (FESEM, EDX, FETEM) analyses. SP3 exhibited extremely high selenite tolerance (1000 mM) and reduced 10 mM selenite under 72 h to produce spherical monodisperse SeNPs with an average size of 149.1 ± 29 nm. FTIR analyses indicated exopolysaccharides coating the surface of SeNPs, which imparted a charge of −29.9 mV (zeta potential). The XRD and Raman spectra revealed the SeNPs to be amorphous. Furthermore, biochemical assays and microscopic studies suggest that selenite was reduced by membrane reductases. This study reports, for the first time, the reduction of selenite and biosynthesis of SeNPs by B. paramycoides, a recently discovered bacterium. The results suggest that B. paramycoides SP3 could be exploited for eco-friendly removal of selenite from contaminated sites with the concomitant biosynthesis of SeNPs.
اظهر المزيد [+] اقل [-]Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand
2013
Wongwongsee, Wanwasan | Chareanpat, Promchat | Pinyakong, Onruthai
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50–76% of 100mg/l phenanthrene within 2weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.
اظهر المزيد [+] اقل [-]Effect of bioemulsificant exopolysaccharide (EPS₂₀₀₃) on microbial community dynamics during assays of oil spill bioremediation: A microcosm study
2012
Cappello, Simone | Genovese, Maria | Della Torre, Camilla | Crisari, Antonella | Hassanshahian, Mehdi | Santisi, Santina | Calogero, Rosario | Yakimov, Michail M.
Microcosms experiments were carried out to evaluate the effect of bioemulsificant exopolysaccharide (EPS₂₀₀₃) on microbial community dynamics. An experimental seawater microcosm, supplemented with crude oil and EPS₂₀₀₃ (SW+OIL+EPS₂₀₀₃), was monitored for 15days and compared to control microcosm (only oil-polluted seawater, SW+OIL). Determination of bacterial abundance, heterotrophic cultivable and hydrocarbon-degrading bacteria were carried out during all experimentation period. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil degradation was monitored by GC–MS analysis. Bioemulsificant addition stimulated an increase of the total bacterial abundance, change in the community structure and activity. The bioemulsificant also increased of 5 times the oil biodegradation rate. The data obtained from microcosm experiment indicated that EPS₂₀₀₃ could be used for the dispersion of oil slicks and could stimulate the selection of marine hydrocarbon degraders thus increasing bioremediation process.
اظهر المزيد [+] اقل [-]Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review
2021
Annamalai, Jayshree | Ummalyma, Sabeela Beevi | Pandey, Ashok | Bhaskar, Thallada
Microbial technology comprising environment in various aspects of pollution monitoring, treatment of pollutants, and energy generation has been put forth by the researchers worldwide in an eco-friendly manner. During the past few decades, this revolution has pronounced microbial cells in green nanotechnology, extending the scope, efficiency, and investment capita at research institutes, industries, and global markets. In the present review, initially, the source for the microbial synthesis of nanoparticles will be discussed involving bacteria, fungi, actinomycetes, microalgae, and viruses. Further, the mechanism and bio-components of microbial cells such as enzymes, proteins, peptides, amino-acids, exopolysaccharides, and others involved in the bio-reduction of metal ions to corresponding metal nanoparticles will be emphasized. The biosynthesized nanoparticles physicochemical properties and bio-reduction methods’ advantages compared with synthetic methods will be detailed. To understand the suitability of biosynthesized nanoparticles in a wide range of applications, an overview of its blend of medicine, agriculture, and electronics will be discussed. This will be geared up with its applications specific to environmental aspects such as bioremediation, wastewater treatment, green-energy production, and pollution monitoring. Towards the end of the review, nano-waste management and limitations, i.e., void gaps that tend to impede the application of biosynthesized nanoparticles and microbial-based nanoparticles’ prospects, will be deliberated. Thus, the review would claim to be worthy of unwrapping microorganisms sustainability in the emerging field of green nanotechnology.
اظهر المزيد [+] اقل [-]Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study
2020
Singh, Shalini | Kumar, Vipin
Mercury (Hg), the environmental toxicant, is present in the soil, water, and air as it is substantially distributed throughout the environment. Being extremely toxic even at low concentration, its remediation is utterly important. Therefore, it is necessary to detoxify the contaminant within the acceptable limits before threatening the environment. Although various conventional methods are being used, irrespective of high cost, it produces intermediate toxic by-product too. Biological methods are eco-friendly, clean, greener, and safer for the remediation of heavy metals corresponding to the conventional remediation due to their economic and high-tech constraints. Bioremediation is now being used for Hg (II) removal, which involves biosorption and bioaccumulation mechanisms or both, also mercuric ion reductase, exopolysaccharide play significant role in detoxification of mercury by acting a potential instrument for the remediation of heavy metals. In this review paper, we shed light on problems caused by mercury pollution, mercury cycle, and its global scenario and detoxification approaches by biological methods and result found in the literature.
اظهر المزيد [+] اقل [-]Effects of TiO2 Nanoparticles on the Neotropical Cladoceran Ceriodaphnia silvestrii by Waterborne and Dietary Routes
2018
de Lucca, Gisele Maria | Freitas, Emanuela Cristina | da Graça Gama Melão, Maria
The impact of nanoparticles (NPs) in zooplankton is poorly studied, particularly when organisms are exposed through diet. Food, constituted mainly by unicellular algae, can act as an important route of contamination for zooplankton. Since unicellular algae have a high surface area in relation to their volume, NPs can interact with their cell membranes and walls, as well as with exopolysaccharides secreted by them. In the present research, we investigated both the acute effects of waterborne titanium dioxide nanoparticles (TiO₂ NPs), and its chronic effects via dietary exposure on the Neotropical freshwater zooplankton Ceriodaphnia silvestrii Daday, 1902 (Crustacea: Cladocera). The observed acute effects served as support for chronic tests, in which we investigated the effects of TiO₂ NPs on survival and life history parameters (body length, numbers of eggs, and neonates produced) of cladoceran adult females, using the freshwater cosmopolitan chlorophycean Raphidocelis subcapitata as source of contamination of TiO₂ NPs for zooplankton. R. subcapitata cells were exposed to concentrations of 0, 0.01, 1, and 10 mg L⁻¹ of TiO₂ NPs for 96 h, and then provided as food for females of C. silvestrii until the third brood was released. Significant toxic effects were observed in body length and total number of neonates and eggs produced by females of C. silvestrii at concentrations of 1 and 10 mg L⁻¹ of TiO₂ NPs. Survival was the most sensitive parameter when exposure was given via food. From the concentration of 0.01 mg L⁻¹ of TiO₂ NPs, there was a decrease in the survival of C. silvestrii females. The quantification of TiO₂ NPs in algae evidenced that they have retained NPs in their cells, being, therefore, an important route of exposure and toxicity of TiO₂ NPs to the studied microcrustacean.
اظهر المزيد [+] اقل [-]