خيارات البحث
النتائج 1 - 7 من 7
Underwater noise level predictions of ammunition explosions in the shallow area of Lithuanian Baltic Sea
2019
Bagočius, Donatas | Narščius, Aleksas
Among the noisiest man-made activities in the seas, emitting very high acoustic energy are the underwater explosions of various objects and ship shock trials. Sound energy emitted by high explosives can be predicted or measured at sea. Sometimes, it can be convenient to apply empirical formulas and scaling laws to approximate the energy of underwater explosions. In addition, at some instances the determination of the spectral properties of the explosions is useful, i.e. when possible animal exposure to impulsive noise has to be evaluated. This paper presents an example of an application of freely available scaling laws and equations for prediction of noise levels of underwater explosions of historical ordnance in the shallow sea environments.Main findings of the study: An available scaling laws applied to model underwater explosion properties; spatial extent of explosion mapped; arising issues of modelling of underwater explosions in the shallow marine areas discussed.
اظهر المزيد [+] اقل [-]Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea
2019
Sertlek, Hüseyin Özkan | Slabbekoorn, Hans | Cate, Carel ten | Ainslie, Michael A.
Effective measures for protecting and preserving the marine environment require an understanding of the potential impact of anthropogenic sound on marine life. A crucial component is a proper assessment of the anthropogenic soundscape: which sounds are present where, when and how strong? We provide an extensive case study modelling the spatial, temporal and spectral distribution of sound radiated by several anthropogenic sources (ships, seismic airguns, explosives) and a naturally occurring one (wind) in the Dutch North Sea. We present the results as a series of sound maps covering the whole of the Dutch North Sea, showing the spatial and temporal distribution of the energy from these sources. Averaged over a two year period, shipping is responsible for the largest amount of acoustic energy (∼1800 J), followed by seismic surveys (∼300 J), explosions (∼20 J) and wind (∼20 J) in the frequency band between 100 Hz and 100 kHz. Our study shows that anthropogenic sources are responsible for 100 times more acoustic energy (averaged over 2 years) in the Dutch North Sea than naturally occurring sound from wind. The potential impact of these sounds on aquatic animals depends not only on these temporally averaged and spatially integrated broadband energies, but also on the source-specific spatial, spectral and temporal variation. Shipping is dominant in the southern part and along the coast in the north, throughout the years and across the spectrum. Seismic surveys are relatively local and spatially and temporally dependent on exploration activities in any particular year, and spectrally shifted to low frequencies relative to the other sources. Explosions in the southern part contribute wide-extent high energy bursts across the spectrum. Relating modelled sound fields to the temporal and spatial distribution of animal species may provide a powerful tool for understanding the potential impact of anthropogenic sound on marine life.
اظهر المزيد [+] اقل [-]Size evolution of ultrafine particles: Differential signatures of normal and episodic events
2016
Joshi, Manish | Khan, Arshad | Anand, S. | Sapra, B.K.
The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard.
اظهر المزيد [+] اقل [-]Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments
2016
Hendrick, Margaret F. | Ackley, Robert | Sanaie-Movahed, Bahare | Tang, Xiaojing | Phillips, Nathan G.
Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 – 2.3 × 104 g CH4•day−1. The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing ‘superemitter’ leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as ‘safely leaking.’ Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks.
اظهر المزيد [+] اقل [-]Environmental impacts of dredging and other sediment disturbances on corals: A review
2012
Erftemeijer, Paul L.A. | Riegl, Bernhard | Hoeksema, Bert W. | Todd, Peter A.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (∼10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL⁻¹ in pristine offshore reef areas to >100mgL⁻¹ in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL⁻¹ while others show mortality after exposure (weeks) to concentrations as low as 30mgL⁻¹. The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5–6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm⁻²d⁻¹ to >400mgcm⁻²d⁻¹. The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.
اظهر المزيد [+] اقل [-]Seasonal Monitoring of Hydrocarbon Degraders in Alabama Marine Ecosystems Following the Deepwater Horizon Oil Spill
2012
Horel, Agota | Mortazavi, Behzad | Sobecky, Patricia A.
Following the Deepwater Horizon explosion and crude oil contamination of a marsh ecosystem in AL in June 2010, hydrocarbon-degrader microbial abundances of aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated seasonally. Surface sediment samples were collected in October and December of 2010 and in April and July of 2011 along 40–70-m transects from the high tide to the intertidal zone including Spartina alterniflora-vegetated marsh, seagrass (Ruppia maritima)-dominated sediments, and nonvegetated sediments. Alkane and total hydrocarbon degraders in the sediment were detected, while PAH degraders were below detection limit at all locations examined during the sampling periods. The highest counts for microbial alkane degraders were observed at the high tide line in April and averaged to 8.65 × 105 of cells/g dry weight (dw) sediment. The abundance of alkane degraders during other months ranged from 9.49 × 103 to 3.87 × 104, while for total hydrocarbon degraders, it ranged between 5.62 × 103 and 1.14 × 105 of cells/g dw sediment. Pore water nutrient concentrations (NH 4 + , NO 3 − , NO 2 − , and PO 4 3− ) showed seasonal changes with minimum values observed in December and April and maximum values in October and July. Concentrations of total petroleum hydrocarbons in sediments averaged 100.4 ± 52.4 and 141.9 ± 57.5 mg/kg in January and July, 2011, respectively. The presence of aerobic microbial communities during all seasons in these nearshore ecosystems suggests that an active and resident microbial community is capable of mineralizing a fraction of petroleum hydrocarbons.
اظهر المزيد [+] اقل [-]Prospects in straw disintegration for biogas production
2013
Maroušek, Josef
The pretreatment methods for enhancing biogas production from oat straw under study include hot maceration, steam explosion, and pressure shockwaves. The micropore area (9, 55, and 64 m(2) g(-1)) inhibitor formations (0, 15, and 0 mL L(-1)) as well as the overall methane yields (67, 179, and 255 CH4 VS t(-1)) were robustly analyzed. It was confirmed that the operating conditions of the steam explosion must be precisely tailored to the substrate. Furthermore, it was beneficial to prepend the hot maceration before the steam explosion and the pressure shockwaves. The second alternative may give increased methane yields (246 in comparison to 273 CH4 VS t(-1)); however, the application of pressure shockwaves still faces limitations for deployment on a commercial scale.
اظهر المزيد [+] اقل [-]