خيارات البحث
النتائج 1 - 10 من 63
Exposure to fipronil induces cell cycle arrest, DNA damage, and apoptosis in porcine trophectoderm and endometrial epithelium, leading to implantation defects during early pregnancy النص الكامل
2021
Park, Wonhyoung | Lim, Whasun | Song, Gwonhwa
Fipronil, a phenyl-pyrazole insecticide, has a wide range of uses, from agriculture to veterinary medicine. Due to its large-scale applications, the risk of environmental and occupational exposure and bioaccumulation raises concerns. Moreover, relatively little is known about the intracellular mechanisms of fipronil in trophoblasts and the endometrium involved in implantation. Here, we demonstrated that fipronil reduced the viability of porcine trophectoderm and luminal epithelial cells. Fipronil induced cell cycle arrest at the sub-G1 phase and apoptotic cell death through DNA fragmentation and inhibition of DNA replication. These reactions were accompanied by homeostatic changes, including mitochondrial depolarization and cytosolic calcium depletion. In addition, we found that exposure to fipronil compromised the migration and implantation ability of pTr and pLE cells. Moreover, alterations in PI3K-AKT and MAPK-ERK1/2 signal transduction were observed in fipronil-treated pTr and pLE cells. Finally, the antiproliferative and apoptotic effects of fipronil were also demonstrated in 3D cell culture conditions. In summary, our results suggest that fipronil impairs implantation potentials in fetal trophectoderm and maternal endometrial cells during early pregnancy.
اظهر المزيد [+] اقل [-]Pollution status, influencing factors and environmental risks of neonicotinoids, fipronil and its metabolites in a typical semi-closed bay in China النص الكامل
2021
He, Xiuping | Chen, Junhui | Li, Xiaotong | Wang, Jiuming | Xin, Ming | Sun, Xia | Cao, Wei | Wang, Baodong
The occurrence, spatiotemporal variations, influence factors and environmental risks of eight common neonicotinoids (NEOs), fipronil, and three fipronil metabolites (fipronil and its metabolites are collectively referred to as FIPs) in different seasons from the estuary to the inner area of Jiaozhou Bay, China were comprehensively investigated. First- and second-generation NEOs were found to be the predominant pesticides in this area. The average contents of ∑NEOs and ∑FIPs from the estuary to the inner bay decreased from 12.99 ng/L to 0.82 ng/L and from 1.10 ng/L to 0.17 ng/L, respectively. NEO and FIP concentrations were higher in summer and autumn. High ∑NEO content is distributed in main inflow rivers, such as Dagu River and Licun River, which are influenced by pesticide application. NEO concentrations in all rivers were high upstream and low downstream because of the influence of heavy rainfall and seawater dilution in summer. NEO concentrations were high along the coast and low at the mouth and center of Jiaozhou Bay in summer and autumn and evenly distributed in winter and spring. Temperature has a great influence on most NEOs and FIPs owing to its effect on their degradation. Nitrogen-containing nutrients have an important influence on the distribution of fipronil and acetamiprid, which may be due to the activity of nitrogen-containing functional groups in their structure. Only Licun River, Dagu River and Haibo river sewage treatment plant in summer posed a certain risk of chronic toxicity for NEOs using the new threshold established by the species sensitive distribution (SSD) method for Chinese native aquatic lives. These findings should arouse people's attention.
اظهر المزيد [+] اقل [-]Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers النص الكامل
2019
Montiel-León, Juan Manuel | Muñoz, Gabriel | Vo Duy, Sung | Do, Dat Tien | Vaudreuil, Marc-Antoine | Goeury, Ken | Guillemette, François | Amyot, Marc | Sauvé, Sébastien
The occurrence and spatial distribution of selected pesticides were investigated along a 200-km reach of the St. Lawrence River (SLR) and tributaries in Quebec, Canada. Surface water samples (n = 68) were collected in the summer 2017 and analyzed for glyphosate, atrazine (ATZ), 8 systemic insecticides (acetamiprid, clothianidin, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam) and some metabolites. Overall, 99% of the surface water samples were positive to at least one of the targeted pesticides. The most recurrent compounds were glyphosate (detection frequency: 84%), ATZ (82%), thiamethoxam (59%), desethylatrazine (DEA: 47%), and clothianidin (46%). Glyphosate displayed variable levels (4–3,000 ng L−1), with higher concentrations in south tributaries (e.g., Nicolet and Yamaska). In positive samples, the sum of ATZ and DEA varied between 5 and 860 ng L−1, and the sum of 6 priority neonicotinoids between 1.5 and 115 ng L−1. From Repentigny to the Sorel Islands, the spatial distribution of pesticides within the St. Lawrence River was governed by the different upstream sources (i.e., Great Lakes vs. Ottawa River) due to the limited mixing of the different water masses. Cross-sectional patterns revealed higher concentrations of glyphosate and neonicotinoids in the north portions of transects, while the middle and south portions showed higher levels of atrazine. In Lake St. Pierre and further downstream, cross-sections revealed higher levels of the targeted pesticides near the southern portions of the SLR. This may be due to the higher contributions from south shore tributaries impacted by major agricultural areas, compared to north shore tributaries with forest land and less cropland use. Surface water samples were compliant with guidelines for the protection of aquatic life (chronic effects) for glyphosate and atrazine. However, 31% of the samples were found to surpass the guideline value of 8.3 ng L−1 for the sum of six priority neonicotinoids.
اظهر المزيد [+] اقل [-]Toxicokinetic of benzo[a]pyrene and fipronil in female green frogs (Pelophylax kl. esculentus) النص الكامل
2012
Reynaud, Stéphane | Worms, Isabelle A.M. | Veyrenc, Sylvie | Portier, Julien | Maitre, Anne | Miaud, Claude | Raveton, Muriel
A general consensus that an increased logKₒw led to an increase in xenobiotic uptake and bioaccumulation is accepted. In this study we compared the toxicokinetics of two chemically different xenobiotics, i.e. benzo[a]pyrene and fipronil in female green frogs. Surprisingly, the uptake rates and the bioconcentration factors (BCF) of the two contaminants were not predicted by their logKₒw. The uptake rates obtained were of the same order of magnitude for the two contaminants and the BCFs measured for fipronil were about 3-fold higher than those obtained for benzo[a]pyrene. Fipronil appeared to be more recalcitrant than benzo[a]pyrene to detoxification processes leading to the accumulation of sulfone-fipronil especially in the ovaries. This phenomenon may explain reproductive influence of this contaminant described in other studies. Detoxification processes, including metabolism and the excretion of pollutants, are of importance when considering their persistence in aquatic organisms and trying to quantify their risks.
اظهر المزيد [+] اقل [-]Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA النص الكامل
2008
Mize, S.V. | Porter, S.D. | Demcheck, D.K.
Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 μg/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (ρ = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 μg/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences. Aquatic macroinvertebrate commmunities in southwestern Louisiana streams respond to a gradient of fipronil compounds in water.
اظهر المزيد [+] اقل [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan النص الكامل
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
اظهر المزيد [+] اقل [-]Realistic exposure to fipronil, 2,4-D, vinasse and their mixtures impair larval amphibian physiology النص الكامل
2022
Silberschmidt Freitas, Juliane | da Silva Pinto, Thandy Junio | Cardoso Yoshii, Maria Paula | Conceição Menezes da Silva, Laís | de Palma Lopes, Laís Fernanda | Pretti Ogura, Allan | Girotto, Laís | Montagner, Cassiana Carolina | de Oliveira Gonçalves Alho, Lays | Castelhano Gebara, Renan | Schiesari, Luís | Espíndola, Evaldo Luíz Gaeta
Expansion of sugarcane crops may have contributed to the increased contamination of native habitats in Brazil. Several species of amphibians inhabit ponds formed in flooded farmlands, where pesticide concentrations are usually high. This study evaluated the ecotoxicological effects of the sugarcane pesticides fipronil and 2,4-D, as well as the fertilizer vinasse (isolated and mixed), on physiological responses of Leptodactylus fuscus and Lithobates catesbeianus tadpoles. In situ assays were conducted in mesocosms with concentrations based on the doses recommended by the manufacturer. Vinasse (1.3% dilution) caused 100% tadpoles’ mortality immediately after its application. Fipronil and/or 2,4-D altered antioxidant and biotransformation responses, induced neurotoxicity and changed lipid contents in tadpoles. A multivariate approach indicated that the mixture of pesticides induced most of the sublethal effects in both tadpole species, in addition to the isolated fipronil in L. fuscus. Fipronil alone increased glucose-6-phosphate dehydrogenase (G6PDH) activity, decreased acetylcholinesterase (AChE) and total lipid contents, and altered some individual lipid classes (e.g., free fatty acids and acetone-mobile polar lipids) in L. fuscus. The interaction between fipronil and 2,4-D in this species were more evident for lipid contents, although enzymatic alterations in G6PDH, AChE and glutathione-S-transferase (GST) were also observed. In L. catesbeianus, the mixture of pesticides reduced triglycerides and total lipids, as well as increased GST and decreased AChE activities. The detoxifying enzyme carboxylesterase was reduced by 2,4-D (alone or in mixture) in both species. Isolated pesticides also modulated specific lipid classes, suggesting their disruptive action on energy metabolism of tadpoles. Our study showed that fipronil, 2,4-D, and vinasse, individually or mixed, can be harmful to amphibians during their larval phase, causing mortality or impairing their functional responses.
اظهر المزيد [+] اقل [-]A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field النص الكامل
2020
Gao, Jing | Wang, Fang | Jiang, Wenqi | Miao, Jingwen | Wang, Peng | Zhou, Zhiqiang | Liu, Donghui
Pesticides applied to paddy fields may pose considerable danger to non-target aquatic organisms and further threaten human health. Flufiprole is a pesticide used in rice fields; considering the widespread existence of rice-fish-farming ecosystems, the acute toxicities of flufiprole enantiomers and its six metabolites (fipronil, flufiprole sulfide, flufiprole sulfone, detrifluoromethylsulfinyl flufiprole, desulfinyl flufiprole, and flufiprole amide) to four common aquatic organisms in rice fields including Misgurnus anguillicaudatus (pond loach), Carassius gibelio (Prussian carp), Pelophylax nigromaculatus (black-spotted frog), and Daphnia magna (water flea) were investigated. Genotoxicity, pathological changes and the effects on the antioxidant system of M. anguillicaudatus were also evaluated after exposure. The LC₅₀ (EC₅₀) values showed that fipronil and desulfinyl flufiprole were the most toxic compounds and were approximately about six times as toxic as flufiprole. No enantioselective toxicity was observed between the two enantiomers. The activity of antioxidant defense enzymes and the content of malondialdehyde (MDA) in the liver and gills of M. anguillicaudatus were significantly increased by the chemicals in most cases. In addition, fipronil and desulfinyl flufiprole were found to induce an increase in the micronucleus rate in M. anguillicaudatus. Histopathological analysis showed that the liver of M. anguillicaudatus was not significantly affected by flufiprole. Our study demonstrated a potential negative effect on flufiprole-treated aquatic organisms. As an alternative to fipronil, the environmental risk of flufiprole and its metabolites to non-target organisms in rice fields cannot be ignored.
اظهر المزيد [+] اقل [-]Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa النص الكامل
2019
Gao, Jing | Wang, Fang | Wang, Peng | Jiang, Wenqi | Zhang, Zhenhua | Liu, Donghui | Zhou, Zhiqiang
Insecticide ethiprole, the alternative of fipronil which has been restricted in many countries, may contaminant water bodies through surface runoff after agricultural application, however, the aquatic toxicity and environmental behavior of ethiprole is still unknown. In this study, five metabolites of ethiprole (ethiprole sulfone, ethiprole sulfide, ethiprole amide, desethylsulfinyl ethiprole and ethiprole sulfone amide) were synthesized and their toxic effects on photosynthetic pigment and antioxidase in aquatic plant Chlorella pyrenoidosa (C. pyrenoidosa) were evaluated on an enantiomeric level. Besides, the accumulation and metabolism of rac-ethiprole and its enantiomers in algae suspension and algae were studied. Ethiprole sulfide was found to be more toxic than ethiprole, with the 96h EC₅₀ value seven times lower than ethiprole. Enantioselective toxicity was observed with R-ethiprole more toxic than S-ethiprole. The contents of chlorophyll were significantly reduced by all the chemicals at higher concentrations, and the levels of protein, malondialdehyde (MDA) and the activity of antioxidant defense enzymes were dose-dependent. The half-life of rac-ethiprole in algae suspension was 13.6 days and ethiprole amide was the major metabolite. However, ethiprole sulfide was the main metabolite in algae, suggesting different metabolic pathways in algae suspension and algae. Enantioselective metabolism in algae suspension was found with S-ethiprole metabolized faster than R-ethiprole. The preferentially accumulated and metabolized of R-ethiprole in algae was observed and C. pyrenoidosa had limited capacity to convert one enantiomer into the other. These findings indicated the toxicity of ethiprole to C. pyrenoidosa is lower than fipronil. The individual enantiomers of chiral pollutants and their metabolites should be considered in risk assessments.
اظهر المزيد [+] اقل [-]Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring: Indication for an overlooked risk in maternal transfer? النص الكامل
2019
Xu, Chao | Niu, Lili | Liu, Jinsong | Sun, Xiaohui | Zhang, Chaonan | Ye, Jing | Liu, Weiping
Ecotoxicological studies show the association between pesticide pollution and transgenerational toxicity in aquatic organisms. However, a less considered risk is that many pesticides can be metabolized and transferred to offspring as new toxicants. In this study, we used zebrafish to evaluate the maternal transfer risk of fipronil (FIP), which is a great threat to aquatic organisms with toxic metabolite formation. After 28-day exposure to environmentally relevant concentrations (1.0, 5.0 and 10.0 μg/L) of FIP in adult female zebrafish (F0), the toxicants off-loading and transgenerational toxicity in offspring were studied. High burdens of FIP and its sulfone metabolite were found in both F0 and the embryos (F1), resulting in increased CYP450 activity. The residual levels of the metabolite were higher than those of the parent compound. Chiral analysis further showed a preferential accumulation of S-enantiomer of FIP in both F0 and F1. Maternal exposure to FIP increased the malformation rate and decreased the swim speed in larvae. Additionally, after exposure, the levels of thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), decreased in both generations, particularly in the F1. Gene transcription expression along the hypothalamic-pituitary-thyroid (HPT) axis was also significantly affected. Maternal exposure to FIP increased sulfone metabolite enrichment and cause multiple toxic effects in F1. Findings from this study highlight the key role of biologically active product formation in the maternal transfer of pollutants and associated risk assessment.
اظهر المزيد [+] اقل [-]