خيارات البحث
النتائج 1 - 10 من 24
Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer
2022
Sörengård, Mattias | Bergström, Sofia | McCleaf, Philip | Wiberg, Karin | Ahrens, Lutz
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g⁻¹ dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L⁻¹. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L⁻¹ (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L⁻¹ and 8 ng L⁻¹ (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
اظهر المزيد [+] اقل [-]Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances?
2022
Ragnarsdóttir, Oddný | Abdallah, Mohamed Abou-Elwafa | Harrad, Stuart
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
اظهر المزيد [+] اقل [-]Identification of novel polyfluoroalkyl substances in surface water runoff from a chemical stockpile fire
2022
Rana, Sahil | Marchiandi, Jaye | Partington, Jordan M. | Szabo, Drew | Heffernan, Amy L. | Symons, Robert K. | Xie, Shay | Clarke, Bradley O.
In 2018, over 30,000 L of fluorine-free firefighting foam was used to extinguish an industrial warehouse fire of uncharacterized chemical and industrial waste. Contaminated firewater and runoff were discharged to an adjacent freshwater creek in Melbourne, Australia. In this study, we applied nontarget analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) to 15 surface water samples to investigate the presence of legacy, novel and emerging per-and polyfluoroalkyl substances (PFAS). We identified six novel and emerging fluorotelomer-based fluorosurfactants in the Australian environment for the first time, including: fluorotelomer sulfonamido betaines (FTABs or FTSA-PrB), fluorotelomer thioether amido sulfonic acids (FTSASs), and fluorotelomer sulfonyl amido sulfonic acids (FTSAS-So). Legacy PFAS including C₆–C₈ perfluoroalkyl sulfonic acids, C₄–C₁₀ perfluoroalkyl carboxylic acids, and perfluoro-4-ethylcyclohexanesulfonate were also detected in surface water. Of note, we report the first environmental detection of ethyl 2-ethenyl-2-fluoro-1-(trifluoromethyl) cyclopropane-1-carboxylate. Analysis of several Class B certified fluorine-free foam formulations allowed for use in Australia revealed that there was no detectable PFAS. Patterns in the homologue profiles of fluorotelomers detected in surface water are consistent with environments impacted by fluorinated aqueous film-forming foams. These results provide strong evidence that firewater runoff of stockpiled fluorinated firefighting foam was the dominant source of detectable PFAS to the surrounding environment.
اظهر المزيد [+] اقل [-]Transport and fate of aqueous film forming foam in an urban estuary
2022
Katz, David R. | Sullivan, Julia C. | Rosa, Kevin | Gardiner, Christine | Robuck, Anna R. | Lohmann, Rainer | Kincaid, Chris | Cantwell, Mark G.
The deployment of aqueous film forming foams (AFFF) used for firefighting during emergencies and training often releases per- and polyfluoroalkyl substances (PFAS) into the environment. In October 2018, first responders in Providence, RI, USA applied an AFFF during a fuel spill. Due to the proximity of the incident to the upper reaches of Narragansett Bay (NB), an unknown quantity of gasoline and AFFF entered the estuary via surface runoff and stormwater drains. Water samples near the spill were collected approximately 15 h after the incident and analyzed for 24 PFAS. Minor increases in measured PFAS concentrations were observed relative to pre- and post-spill samples at monitoring sites near the incident, except 6:2-fluorotelomer sulfonate (6:2-FTS) that peaked post-spill (max 311 ng/L). After performing the total oxidizable precursor (TOP) assay on water samples and the AFFF concentrate, significant increases in perfluorocarboxylic acids (PFCAs) were observed. One compound, 6:2 fluorotelomer mercaptoalkylamido sulfonate (6:2-FTSAS), was identified as a major component of the AFFF used. Peak areas of 6:2-FTSAS and the degradation product 6:2-FTSAS-sulfoxide corresponded to observed increases in the TOP assay results and were useful as tracers of AFFF in surrounding waters. Elevated levels of PFAS at the time of sampling were limited to a confined area of the Providence River due to river flow and tidal action. Observed concentrations were also compared to hydrodynamic model results, and results confirmed rapid dissipation of AFFF components with distance from the spill. However, modeled results did not capture possible secondary releases of AFFF from local municipal stormwater and sewer infrastructure, as observational data suggest. The multiple lines of evidence of PFAS present in surface waters permitted a better assessment of the potential environmental impacts from products such as AFFF for which the chemical composition is largely unknown.
اظهر المزيد [+] اقل [-]Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio
2021
Sant, Karilyn E. | Annunziato, Kate | Conlin, Sarah | Teicher, Gregory | Chen, Phoebe | Venezia, Olivia | Downes, Gerald B. | Park, Yeonhwa | Timme-Laragy, Alicia R.
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental contaminant previously found in consumer surfactants and industrial fire-fighting foams. PFOS has been widely implicated in metabolic dysfunction across the lifespan, including diabetes and obesity. However, the contributions of the embryonic environment to metabolic disease remain uncharacterized. This study seeks to identify perturbations in embryonic metabolism, pancreas development, and adiposity due to developmental and subchronic PFOS exposures and their persistence into later larval and juvenile periods. Zebrafish embryos were exposed to 16 or 32 μM PFOS developmentally (1–5 days post fertilization; dpf) or subchronically (1–15 dpf). Embryonic fatty acid and macronutrient concentrations and expression of peroxisome proliferator-activated receptor (PPAR) isoforms were quantified in embryos. Pancreatic islet morphometry was assessed at 15 and 30 dpf, and adiposity and fish behavior were assessed at 15 dpf. Concentrations of lauric (C12:0) and myristic (C14:0) saturated fatty acids were increased by PFOS at 4 dpf, and PPAR gene expression was reduced. Incidence of aberrant islet morphologies, principal islet areas, and adiposity were increased in 15 dpf larvae and 30 dpf juvenile fish. Together, these data suggest that the embryonic period is a susceptible window of metabolic programming in response to PFOS exposures, and that these early exposures alone can have persisting effects later in the lifecourse.
اظهر المزيد [+] اقل [-]Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident
2020
Firefighting foams contain per- and polyfluoroalkyl substances (PFAS) – a class of compounds widely used as surfactants. PFAS are persistent organic pollutants that have been reported in waterways and drinking water systems across the United States. These substances are of interest to both regulatory agencies and the general public because of their persistence in the environment and association with adverse health effects. PFAS can be released in large quantities during industrial incidents because they are present in most firefighting foams used to suppress chemical fires; however, little is known about persistence of PFAS in public waterways after such events. In response to large-scale fires at Intercontinental Terminal Company (ITC) in Houston, Texas in March 2019, almost 5 million liters of class B firefighting foams were used. Much of this material flowed into the Houston Ship Channel and Galveston Bay (HSC/GB) and concerns were raised about the levels of PFAS in these water bodies that have commercial and recreational uses. To evaluate the impact of the ITC incident response on PFAS levels in HSC/GB, we collected 52 surface water samples from 12 locations over a 6-month period after the incident. Samples were analyzed using liquid chromatography–mass spectrometry to evaluate 27 PFAS, including perfluorocarboxylic acids, perfluorosulfonates and fluorotelomers. Among PFAS that were evaluated, 6:2 FTS and PFOS were detected at highest concentrations. Temporal and spatial profiles of PFAS were established; we found a major peak in the level of many PFAS in the days and weeks after the incident and a gradual decline over several months with patterns consistent with the tide- and wave-associated water movements. This work documents the impact of a large-scale industrial fire, on the environmental levels of PFAS, establishes a baseline concentration of PFAS in HSC/GB, and highlights the critical need for development of PFAS water quality standards.
اظهر المزيد [+] اقل [-]Fate and budget of poly- and perfluoroalkyl substances in three common garden plants after experimental additions with contaminated river water
2021
McDonough, Andrew M. | Bird, Adam W. | Freeman, Lindsay M. | Luciani, Michael A. | Todd, Aaron K.
Poly- and perfluoroalkyl substances (PFAS) have become ubiquitous contaminants in the environment. Contamination of the terrestrial ecosystem can occur from the release of aqueous film forming foams (AFFF) used in firefighting operations. Following soil contamination with AFFF, studies report root uptake and translocation of PFAS to other plant organs, typically favouring the short chain moiety. This body of experimental work often focuses on edible organs and generally lacks entire PFAS budgets. Here, we calculate short chain (≤6 carbons) and long chain (≥6 or ≥ 7 carbons) PFAS concentrations and respective budgets for terrestrial multimedia mesocosms (plants, soil and lysimeter) of three common agricultural plants (tomato, lettuce and beet) following irrigation with low level PFAS (<1 μg L⁻¹) contaminated river water (short chain: 167 ng L⁻¹; long chain 526 ng L⁻¹). Total net recoveries were strong, ranging between 91% and 118% of added PFAS across all media. While soil was the largest receptor of PFAS in general (∼70% and 115%), there was considerable mobility to various media, including vegetation (∼3% and 20%) and leachate (∼1%). Translocation of short chain PFAS to tomato flowers resulted with biomagnified concentrations (maximus >4000 ng g⁻¹) and accounted for 1.4% of PFAS additions. While smaller tomato fruits had higher concentrations of short chain PFAS, larger fruit had more total PFAS mass. This work provides a detailed description of the fate of short and long chain PFAS when added to relatively uncontaminated terrestrial agricultural systems. We show low-level PFAS concentrations from real-world irrigation sources can affect various receptors across the multimedia landscape. This is most evident in tomato flowers and fruit where biomagnification and high total masses of short chain PFAS occurred which could have implications for pollinators and consumption, respectively.
اظهر المزيد [+] اقل [-]Organic contaminants formed during fire extinguishing using different firefighting methods assessed by nontarget analysis
2020
Dubocq, Florian | Bjurlid, Filip | Ydstål, Danielle | Titaley, Ivan A. | Reiner, Eric | Wang, Thanh | Almirall, Xavier Ortiz | Kärrman, Anna
During a fire event, potentially hazardous chemicals are formed from the combustion of burning materials and are released to the surrounding environment, both via gas and soot particles. The aim of this investigation was to study if firefighting techniques influence the emission of chemicals in gas phase and soot particles. Five full-scale fire tests were extinguished using four different firefighting techniques. A nontarget chemical analysis approach showed that important contaminants in gas and soot separating the different tests were brominated flame retardants (BFRs), organophosphate flame retardants (OPFR), polycyclic aromatic hydrocarbons (PAHs) and linear hydrocarbons. Reproducibility was evaluated by a field replicate test and it was determined that the temperature curve during the event had a bigger impact on the released chemicals than the firefighting technique used. However, despite fire intensity being a confounding factor, multivariate statistics concluded that water mist with additive resulted in less BFR emissions compared to foam extinguishing. The analysis also showed that the conventional spray nozzle method released more PAHs compared with the water mist method. The comprehensive chemical analysis of gas and soot released during fire events was able to show that different firefighting techniques influenced the release of chemicals.
اظهر المزيد [+] اقل [-]Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in U.S. drinking water
2018
Guelfo, Jennifer L. | Adamson, David T.
The United States Environmental Protection Agency (USEPA) completed nationwide screening of six perfluoroalkyl substances in U.S. drinking water from 2013 to 2015 under the Third Unregulated Contaminant Monitoring Rule (UCMR3). UCMR3 efforts yielded a dataset of 36,139 samples containing analytical results from >5000 public water systems (PWSs). This study used UCMR3 data to investigate three aspects of per- and polyfluoroalkyl substances (PFASs) in drinking water: the occurrence of PFAS and co-contaminant mixtures, trends in PFAS detections relative to PWS characteristics and potential release types, and temporal trends in PFAS occurrence. This was achieved through bivariate and multivariate analyses including categorical analysis, concentration ratios, and hierarchical cluster analysis. Approximately 50% of samples with PFAS detections contained ≥2 PFASs, and 72% of detections occurred in groundwater. Large PWSs (>10,000 customers) were 5.6 times more likely than small PWSs (≤10,000 customers) to exhibit PFAS detections; however, when detected, median total PFAS concentrations were higher in small PWSs (0.12 μg/L) than in large (0.053 μg/L). Bivariate and multivariate analyses of PFAS composition suggested PWSs reflect impacts due to firefighting foam use and WWTP effluent as compared to other source types for which data were available. Mann-Kendall analysis of quarterly total PFAS detection rates indicated an increasing trend over time (p = 0.03). UCMR3 data provide a foundation for tiered design of targeted sampling and analysis plans to address remaining knowledge gaps in the sources, composition, and concentrations of PFASs in U.S. drinking water.
اظهر المزيد [+] اقل [-]Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio
2017
Sant, Karilyn E. | Jacobs, Haydee M. | Borofski, Katrina A. | Moss, Jennifer B. | Timme-Laragy, Alicia R.
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous environmental contaminant, previously utilized as a non-stick application for consumer products and firefighting foam. It can cross the placenta, and has been repeatedly associated with increased risk for diabetes in epidemiological studies. Here, we sought to establish the hazard posed by embryonic PFOS exposures on the developing pancreas in a model vertebrate embryo, and develop criteria for an adverse outcome pathway (AOP) framework to study the developmental origins of metabolic dysfunction. Zebrafish (Danio rerio) embryos were exposed to 16, 32, or 64 μM PFOS beginning at the mid-blastula transition. We assessed embryo health, size, and islet morphology in Tg(insulin-GFP) embryos at 48, 96 and 168 hpf, and pancreas length in Tg(ptf1a-GFP) embryos at 96 and 168 hpf. QPCR was used to measure gene expression of endocrine and exocrine hormones, digestive peptides, and transcription factors to determine whether these could be used as a predictive measure in an AOP. Embryos exposed to PFOS showed anomalous islet morphology and decreased islet size and pancreas length in a U-shaped dose-response curve, which resemble congenital defects associated with increased risk for diabetes in humans. Expression of genes encoding islet hormones and exocrine digestive peptides followed a similar pattern, as did total larval growth. Our results demonstrate that embryonic PFOS exposures can disrupt pancreatic organogenesis in ways that mimic human congenital defects known to predispose individuals to diabetes; however, future study of the association between these defects and metabolic dysfunction are needed to establish an improved AOP framework.
اظهر المزيد [+] اقل [-]