خيارات البحث
النتائج 1 - 10 من 158
Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route
2012
Fouqueray, Manuela | Dufils, Benjamin | Vollat, Bernard | Chaurand, Perrine | Botta, Céline | Abacci, K | Labille, Jérôme | Rose, Jérôme | Garric, Jeanne | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | The toxicity of dietary exposure to artificially aged TiO2 nanomaterial (T-Lite (TM)) used in sunscreen cream was studied on D. magna. Pseudokirchneriella subcapitata cultures were contaminated with TiO2-residues, obtained by artificial aging. Significant association of TiO2-residues on algae was detected by X-ray fluorescence spectromicroscopy. A D. magna dietary chronic exposure of these contaminated algae with TiO2-residues was performed. X-ray chemical imaging revealed that Ti was localized only in the digestive tract of the daphnia. Chronic exposure of daphnia to by-product of aged TiO2 nanoparticles brought by food induced low mortality but decreased growth and reproduction which can be partly related to the modification of the digestive physiology of daphnia. This study demonstrated that the assessment of the ecotoxicological impact of nanomaterials in aquatic environment should take into account the aging of these materials which can further influence their bioavailability for aquatic organisms.
اظهر المزيد [+] اقل [-]Food pollution
1972
Marine, Gene | Van Allen, Judith
Effect of daily co-exposure to inulin and chlorpyrifos on selected microbiota endpoints in the SHIME® model
2022
Joly Condette, Claire | Djekkoun, Narimane | Reygner, Julie | Depeint, Flore | Delanaud, Stephane | Rhazi, Larbi | Bach, Veronique | Khorsi-Cauet, Hafida
The intestinal microbiota has a key role in human health via the interaction with the somatic and immune cells in the digestive tract environment. Food, through matrix effect, nutrient and non-nutrient molecules, is a key regulator of microbiota diversity. As a food contaminant, the pesticide chlorpyrifos (CPF) has an effect on the composition of the intestinal microbiota and induces perturbation of microbiota. Prebiotics (and notably inulin) are known for their ability to promote an equilibrium of the microbiota that favours saccharolytic bacteria. The SHIME® dynamic in vitro model of the human intestine was exposed to CPF and inulin concomitantly for 30 days, in order to assess variations in both the bacterial populations and their metabolites. Various analyses of the microbiota (notably temporal temperature gradient gel electrophoresis) revealed a protective effect of the prebiotic through inhibition of the enterobacterial (E. coli) population. Bifidobacteria were only temporarily inhibited at D15 and recovered at D30. Although other potentially beneficial populations (lactobacilli) were not greatly modified, their activity and that of the saccharolytic bacteria in general were highlighted by an increase in levels of short-chain fatty acids and more specifically butyrate. Given the known role of host-microbiota communication, CPF's impact on the body's homeostasis remains to be determined.
اظهر المزيد [+] اقل [-]Improved Raman spectroscopy-based approach to assess microplastics in seafood
2021
Leung, Matthew Ming-Lok | Ho, Yuen-Wa | Lee, Cheng-Hao | Wang, Youji | Hu, Menghong | Kwok, Kevin Wing Hin | Chua, Song-Lin | Fang, James Kar-Hei
Microplastics represent an emerging environmental issue and have been found almost everywhere including seafood, raising a great concern about the ecological and human health risks they pose. This study addressed the common technical challenges in the assessment of microplastics in seafood by developing an improved protocol based on Raman spectroscopy and using the green-lipped mussel Perna viridis and the Japanese jack mackerel Trachurus japonicus as the test models. Our findings identified a type of stainless-steel filter membranes with minimal Raman interference, and a combination of chemicals that achieved 99–100% digestion efficiency for both organic and inorganic biomass. This combined chemical treatment reached 90–100% recovery rates for seven types of microplastics, on which the surface modification was considered negligible and did not affect the accuracy of polymer identification based on Raman spectra, which showed 94–99% similarity to corresponding untreated microplastics. The developed extraction method for microplastics was further combined with an automated Raman mapping approach, from which our results confirmed the presence of microplastics in P. viridis and T. japonicus collected from Hong Kong waters. Identified microplastics included polypropylene, polyethylene, polystyrene and poly(ethylene terephthalate), mainly in the form of fragments and fibres. Our protocol is applicable to other biological samples, and provides an improved alternative to streamline the workflow of microplastic analysis for routine monitoring purposes.
اظهر المزيد [+] اقل [-]Effects of endocrine disrupting chemicals in pigs
2020
Yang, Changwon | Song, Gwonhwa | Lim, Whasun
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
اظهر المزيد [+] اقل [-]Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: Drivers of variation and implications for subsistence consumption
2020
Lescord, Gretchen L. | Johnston, Thomas A. | Heerschap, Matthew J. | Keller, W (Bill) | Southee, F Meg | O’Connor, Constance M. | Dyer, Richard D. | Branfireun, Brian A. | Gunn, John M.
Eating fish provides numerous health benefits, but it is also a dominant pathway for human exposure to contaminants. Many studies have examined mercury (Hg) accumulation in fish, but fewer have considered other elements, such as arsenic (As) and chromium (Cr). Recently, freshwater fish from several pristine boreal systems across northern Ontario, Canada, have been reported with elevated concentrations of As and Cr for reasons that are not well understood. Our goal was to investigate the ecological and environmental influences over concentrations of As, Cr, and other elements in these fish to better understand what affects metal uptake and the risk to consumers. We measured 10 elements (including As, Cr, Hg) as well as carbon (δ¹³C), nitrogen (δ¹⁵N), and sulfur (δ³⁴S) stable isotopes in 388 fish from 25 lake and river sites across this remote region. These data were used to determine the effect of: 1) trophic ecology; and 2) watershed geology on piscine elemental content. Overall, most element concentrations were low, often below provincial advisory benchmarks (ABs). However, traces of Hg, As, Cr, and selenium (Se) were detected in most fish. Based on their exceedance of their respective ABs, the most restrictive elements on fish consumption in these boreal systems were Hg > As > Cr. Arsenic and Se, but not Cr concentrations were related to fish size and trophic ecology (inferred from δ¹³C and δ¹⁵N), suggesting bioaccumulation of the former elements. Fish with enriched δ³⁴S values, suggestive of anadromous behaviour, had marginally lower Hg but higher Se concentrations. Modeling results suggested a strong effect of site-specific factors, though we found weak trends between piscine elemental content and geological features (e.g., mafic intrusions), potentially due to the broad spatial scale of this study. Results from this study address gaps in our understanding of As and Cr bioaccumulation and will help to inform fish consumption guidelines.
اظهر المزيد [+] اقل [-]Should oral exposure in Hypoaspis aculeifer tests be considered in order to keep them in Tier I test battery for ecological risk assessment of PPPs?
2019
Natal-da-Luz, Tiago | Gevaert, Tom | Pereira, Carla | Alves, Daniela | Arena, Maria | Sousa, José Paulo
The laboratory reproduction test with the predatory mite Hypoaspis aculeifer is currently a mandatory test in the new EU data requirements for prospective environmental risk assessment of Plant Protection Products (PPPs). However, the low sensitivity often shown by this mite towards PPPs, when compared to other invertebrates (namely Folsomia candida and Eisenia fetida), makes the test with this species not very useful in the lower tier test battery. However, the current test protocol only considers exposure to contaminants via contaminated soil, disregarding exposure via contaminated food and does not take into account the fact that H. aculeifer is a predatory species. Therefore, through this protocol, the toxicity of contaminants to soil mites might be underestimated and, thus, an adaptation of the test performance, by including exposure via contaminated food, may be necessary. With this aim, two reproduction tests with H. aculeifer were performed using copper chloride as model substance, artificial soil as test substrate and cheese mites as food. The OECD guideline was followed but, while in one test cheese mites from normal laboratory breeding cultures (clean prey mites) were provided, in the other test, cheese mites previously exposed to copper (Cu pre-exposed prey mites) were provided. Predatory mites were affected at lower concentrations in tests using Cu pre-exposed prey compared to test with clean-prey (NOEC = 1225 and 1508 mg kg⁻¹ and EC₁₀ = 1204 and 1903 mg kg⁻¹ using Cu pre-exposed and clean prey, respectively). However, this higher sensitivity was not detected by EC₅₀ values (EC₅₀ = 2634 and 2814 mg kg⁻¹ using Cu pre-exposed and clean prey, respectively). Further tests are needed in order to (i) investigate the relevance of oral exposure to different PPPs, (ii) optimize the contamination of prey mites according to the chemical properties of each substance and (iii) substantiate a proposal to adapt the standard protocol.
اظهر المزيد [+] اقل [-]Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk
2018
Jia, Jinpu | Bi, Chunjuan | Zhang, Junfeng | Jin, Xiaopei | Chen, Zhenlou
Dietary consumption of contaminated vegetables may contribute to polycyclic aromatic hydrocarbon (PAH) exposure in humans; however, this exposure pathway has not been examined thoroughly. This study aims to characterize the concentrations of PAHs in six types of vegetables grown near industrial facilities in Shanghai, China. We analyzed 16 individual PAHs on the US EPA priority list, and the total concentration in vegetables ranged from 65.7 to 458.0 ng g−1 in the following order: leafy vegetables (romaine lettuce, Chinese cabbage and Shanghai green cabbage) > stem vegetables (lettuce) > seed and pod vegetables (broad bean) > rhizome vegetables (daikon). Vegetable species, wind direction, and local anthropogenic emissions were determinants of PAH concentrations in the edible part of the vegetable. Using isomer ratios and principal component analysis, PAHs in the vegetables were determined to be mainly from coal and wood combustion. The sources of PAHs in the six types of vegetables varied. Daily ingestion of PAHs due to dietary consumption of these vegetables ranged from 0.71 to 14.06 ng d−1 kg−1, with contributions from Chinese cabbage > broad bean > romaine > Shanghai green cabbage > lettuce > daikon. The daily intake doses adjusted by body weight in children were higher than those in teenagers and adults. Moreover, in adults, higher concentrations of PAHs were found in females than in males. For individuals of different age and gender, the incremental lifetime cancer risks (ILCRs) from consuming these six vegetables ranged from 4.47 × 10−7 to 6.39 × 10−5. Most were higher than the acceptable risk level of 1 × 10−6. Our findings demonstrate that planting vegetables near industrial facilities may pose potential cancer risks to those who consume the vegetables.
اظهر المزيد [+] اقل [-]The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil
2016
Amato-Lourenco, Luís Fernando | Moreira, Tiana Carla Lopes | de Oliveira Souza, Vanessa Cristina | Barbosa, Fernando | Saiki, Mitiko | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Mauad, Thais
Although urban horticulture provides multiple benefits to society, the extent to which these vegetables are contaminated by the absorption of chemical elements derived from atmospheric deposition is unclear. This study was designed to evaluate the influence of air pollution on leafy vegetables in community gardens of Sao Paulo, Brazil. Vegetable seedlings of Brassica oleracea var. acephala (collard greens) and Spinacia oleracea (spinach) obtained in a non-polluted rural area and growing in vessels containing standard uncontaminated soil were exposed for three consecutive periods of 30, 60 and 90 days in 10 community gardens in Sao Paulo and in one control site. The concentrations of 17 chemical elements (traffic-related elements and those essential to plant biology) were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Tillandsia usneoides L. specimens were used as air plant biomonitors. The concentrations of As, Cd, Cr and Pb found in vegetables were compared to the recommended values for consumption. Principal Component Analysis (PCA) was used to cluster the elemental concentrations, and Generalized Linear Models (GLMs) were employed to evaluate the association of the factor scores from each PCA component with variables such as local weather, traffic burden and vertical barriers adjacent to the gardens. We found significant differences in the elemental concentrations of the vegetables in the different community gardens. These differences were related to the overall traffic burden, vertical obstacles and local weather. The Pb and Cd concentrations in both vegetables exceeded the limit values for consumption after 60 days of exposure. A strong correlation was observed between the concentration of traffic-related elements in vegetables and in Tillandsia usneoides L. An exposure response was observed between traffic burden and traffic-derived particles absorbed in the vegetables. Traffic-derived air pollution directly influences the absorption of chemical elements in leafy vegetables, and the levels of these elements may exceed the recommended values for consumption.
اظهر المزيد [+] اقل [-]Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species
2013
Norton, Gareth J. | Adomako, Eureka E. | Deacon, Claire M. | Carey, Anne-Marie | Price, Adam H. | Meharg, Andrew A.
Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.
اظهر المزيد [+] اقل [-]