خيارات البحث
النتائج 1 - 10 من 71
Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia
2018
Proisy, Christophe | Viennois, Gaëlle | Sidik, Frida | Andayani, Ariani | Enright, James Antony | Guitet, Stéphane | Gusmawati, Niken | Lemonnier, Hugues | Muthusankar, Gowrappan | Olagoke, Adewole, A | Prosperi, Juliana | Rahmania, Rinny | Ricout, Anaïs, A | Soulard, Benoit | Suhardjono, X | Institut Français de Pondichéry (IFP) ; Ministère de l'Europe et des Affaires étrangères (MEAE)-Centre National de la Recherche Scientifique (CNRS) | Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]) | The Ministry of Marine Affairs and Fisheries | Mangrove Action Project | Groupement d'Interêt Public Ecosystèmes Forestiers GIP ECOFOR (GIP ECOFOR ) | Ifremer - Nouvelle-Calédonie ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Université de la Nouvelle-Calédonie (UNC) | Technische Universität Dresden = Dresden University of Technology (TU Dresden) | Indonesian Institute of Sciences (LIPI) | Projet INDESO; http://www.indeso.web.id
International audience | Revegetation of abandoned aquaculture regions should be a priority for any integrated coastal zone management (ICZM). This paper examines the potential of a matchless time series of 20 very high spatial resolution (VHSR) optical satellite images acquired for mapping trends in the evolution of mangrove forests from 2001 to 2015 in an estuary fragmented into aquaculture ponds. Evolution of mangrove extent was quantified through robust multitemporal analysis based on supervised image classification. Results indicated that mangroves are expanding inside and outside ponds and over pond dykes. However, the yearly expansion rate of vegetation cover greatly varied between replanted ponds. Ground truthing showed that only Rhizophora species had been planted, whereas natural mangroves consist of Avicennia and Sonneratia species. In addition, the dense Rhizophora plantations present very low regeneration capabilities compared with natural mangroves. Time series of VHSR images provide comprehensive and intuitive level of information for the support of ICZM.
اظهر المزيد [+] اقل [-]Soil Solution Nitrogen and Cations Influenced by (NH4)2SO4 Deposition in a Coniferous Forest
1997
Carnol, Monique | Ineson, Phil | Dickinson, A. L.
peer reviewed | The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.
اظهر المزيد [+] اقل [-]Impacts of (NH4)2SO4 deposition on Norway spruce (Picea abies [L.] Karst) roots
1999
Carnol, Monique | Cudlin, Pavel | Ineson, Phil
peer reviewed | The effects of enhanced (NH4)(2)SO4 (NS) deposition on Norway spruce (Picea abies [L.] Karst) fine root biomass, vitality and chemistry were investigated using root-free in-growth cores reproducing native organic and mineral soil horizons. The cores were covered and watered every 2 weeks with native throughfall or throughfall supplemented with NS to increase deposition by 75 kg ha(-1) a(-1) NH4+-N (86 kg ha(-1) a(-1) SO42--S). The in-growth cores were sampled after 19 months and assessed for root biomass, necromass, length, tip number, tip vitality and fine root chemistry. Root biomass and fine root aluminium (Al) concentration were negatively correlated, but NS deposition had no effect on root growth or root tip vitality. NS deposition caused increased fine root nitrogen (N) concentrations in the organic horizon and increased Calcium (Ca) concentrations in the mineral horizon. Fine root biomass was higher in the organic horizon, where fine root Al and potassium (K) concentrations were lower and Ca concentrations higher than in the mineral horizon. Results highlighted the importance of soil stratification on fine root growth and chemical composition.
اظهر المزيد [+] اقل [-]The leaching behaviour of herbicides in cropping soils amended with forestry biowastes
2022
James, Trevor K. | Ghanizadeh, Hossein | Harrington, Kerry C. | Bolan, Nanthi S.
Leaching of herbicides in cropping soils not only impacts the groundwater sources but also reduces their effect in controlling weeds. Leaching studies were carried out in two cropping soils and two forestry biowaste media, wood pulp and sawdust with two herbicides, atrazine and bromacil in a packed lysimeter with simulated rainfall. The hypothesis was that high organic matter forestry biowaste soil amendments reduce the leaching of herbicides through the soil profile. Results from the experimental setups varied due to the impact of the simulated rainfall on the surface structure of the media. Organic carbon content, pH and structure of the media were all factors which affected the leaching of the two herbicides. The hypothesis was true for wood pulp, but for sawdust, organic matter content had less bearing on the leaching of the herbicides than other over-riding factors, such as pH, that were media specific. In sawdust, its large particle size and related pore volume allowed preferential flow of herbicides. Overall, the data indicated that both forestry biowastes were retentive to herbicide leaching, but the effect was more pronounced with wood pulp than sawdust.
اظهر المزيد [+] اقل [-]Surface-air mercury fluxes and a watershed mass balance in forested and harvested catchments
2021
Eckley, Chris S. | Eagles-Smith, Collin | Tate, Michael T. | Krabbenhoft, David P.
Forest soils are among the world’s largest repositories for long-term accumulation of atmospherically deposited mercury (Hg), and understanding the potential for remobilization through gaseous emissions, aqueous dissolution and runoff, or erosive particulate transport to down-gradient aquatic ecosystems is critically important for projecting ecosystem recovery. Forestry operations, especially clear-cut logging where most of the vegetaiton is removed, can influence Hg mobility/fluxes, foodweb dynamics, and bioaccumulation processes. This paper measured surface-air Hg fluxes from catchments in the Pacific Northwest, USA, to determine if there is a difference between forested and logged catchments. These measurements were conducted as part of a larger project on the impact of forestry operations on Hg cycling which include measurements of water fluxes as well as impacts on biota. Surface-air Hg fluxes were measured using a commonly applied dynamic flux chamber (DFC) method that incorporated diel and seasonal variability in elemental Hg (Hg⁰) fluxes at multiple forested and harvested catchments. The results showed that the forested ecosystem had depositional Hg⁰ fluxes throughout most of the year (annual mean: −0.26 ng/m²/h). In contrast, the harvested catchments showed mostly emission of Hg⁰ (annual mean: 0.63 ng/m²/h). Differences in solar radiation reaching the soil was the primary driver resulting in a shift from net deposition to emission in harvested catchments. The surface-air Hg fluxes were larger than the fluxes to water as runoff and accounted for 97% of the differences in Hg sequestered in forested versus harvested catchments.
اظهر المزيد [+] اقل [-]Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions
2021
In this study, the co-pyrolysis of food waste with lignocellulosic biomass (wood bark) in a continuous-flow pyrolysis reactor was considered as an effective strategy for the clean disposal and value-added utilization of the biowaste. To achieve this aim, the effects of major co-pyrolysis parameters such as pyrolysis temperature, the flow rate of the pyrolysis medium (nitrogen (N₂) gas), and the blending ratio of food waste/wood bark on the yields, compositions, and properties of three-phase pyrolytic products (i.e., non-condensable gases, condensable compounds, and char) were investigated. The temperature and the food waste/wood bark ratio were found to affect the pyrolytic product yields, while the N₂ flow rate did not. More non-condensable gases and less char were produced at higher temperatures. For example, as the temperature was increased from 300 °C to 700 °C, the yield of non-condensable gases increased from 6.3 to 17.5 wt%, while the yield of char decreased from 63.6 to 30.6 wt% for the co-pyrolysis of food waste and wood bark at a weight ratio of 1:1. Both the highest yield of hydrogen (H₂) gas and the most significant suppression of the formation of phenolic and polycyclic aromatic hydrocarbon (PAH) compounds were achieved with a combination of food waste and wood bark at a weight ratio of 1:1 at 700 °C. The results suggest that the synergetic effect of food waste and lignocellulosic biomass during co-pyrolysis can be exploited to increase the H₂ yield while limiting the formation of phenolic compounds and PAH derivatives. This study has also proven the effectiveness of co-pyrolysis as a process for the valorization of biowaste that is produced by agriculture, forestry, and the food industry, while reducing the formation of harmful chemicals.
اظهر المزيد [+] اقل [-]Does nitrogen deposition increase forest production? The role of phosphorus
2010
Braun, Sabine | Thomas, Vera F.D. | Quiring, Rebecca | Flückiger, Walter
Effects of elevated N deposition on forest aboveground biomass were evaluated using long-term data from N addition experiments and from forest observation plots in Switzerland. N addition experiments with saplings were established both on calcareous and on acidic soils, in 3 plots with Fagus sylvatica and in 4 plots with Picea abies. The treatments were conducted during 15 years and consisted of additions of dry NH4NO3 at rates of 0, 10, 20, 40, 80, and 160 kg N ha-1 yr-1. The same tree species were observed in permanent forest observation plots covering the time span between 1984 and 2007, at modeled N deposition rates of 12-46 kg N ha-1 yr-1. Experimental N addition resulted in either no change or in a decreased shoot growth and in a reduced phosphorus concentration in the foliage in all experimental plots. In the forest, a decrease of foliar P concentration was observed between 1984 and 2007, resulting in insufficient concentrations in 71% and 67% of the Fagus and Picea plots, respectively, and in an increasing N:P ratio in Fagus. Stem increment decreased during the observation period even if corrected for age. Forest observations suggest an increasing P limitation in Swiss forests especially in Fagus which is accompanied by a growth decrease whereas the N addition experiments support the hypothesis that elevated N deposition is an important cause for this development.
اظهر المزيد [+] اقل [-]Response and potential of agroforestry crops under global change
2010
Calfapietra, C. | Gielen, B. | Karnosky, D. | Ceulemans, R. | Scarascia Mugnozza, G.
The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level. Growth and management of agroforestry plantations will be influenced by climate change.
اظهر المزيد [+] اقل [-]Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction
2008
Darbah, Joseph N.T. | Kubiske, Mark E. | Nelson, Neil | Oksanen, Elina | Vapaavuori, Elina | Karnosky, David F.
We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO(2) and/or O(3) on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO(2) increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O(3) also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO(2)+O(3)) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO(2) may have a largely positive impact on forest tree reproduction and regeneration while elevated O(3) will likely have a negative impact.
اظهر المزيد [+] اقل [-]Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility
2008
Blaha, U. | Appel, E. | Stanjek, H.
This study focuses on magnetic susceptibility processing and analysis towards fast and cost-efficient discrimination and semi-quantification of anthropogenic heavy metal loads in soil. Spatial variability of magnetic susceptibility was investigated on sets of soil cores from both “polluted” and “less polluted” forest soil close to a steel mill near Leoben, Austria. Test sites of 10 m2 represent “site scale” dimensions. Statistical analysis of magnetic data provides a boundary depth indicating the transition from the “polluted” to the deeper, “unpolluted” zone in contaminated natural soil. Introduction of a block master curve simplifies the complex variations of individual curves, and represents magnetic susceptibility at “site scale”. For linking the block master curve to heavy metals we only require magnetic susceptibility data from one soil core and heavy metal data from two sub-samples from the same core. Our optimized magnetic susceptibility data processing scheme provides an applicable tool to semi-quantify anthropogenic heavy metal loads in soil.
اظهر المزيد [+] اقل [-]