خيارات البحث
النتائج 1 - 5 من 5
Fine air pollution particles trapped by street tree barks: In situ magnetic biomonitoring
2020
Chaparro, Marcos A.E. | Chaparro, Mauro A.E. | Castañeda-Miranda, Ana G. | Marié, Débora C. | Gargiulo, José D. | Lavornia, Juan M. | Natal, Marcela | Böhnel, Harald N.
Particulate air pollution in cities comprises a variety of harmful compounds, including fine iron rich particles, which can persist in the air for long time, increasing the adverse exposure of humans and living things to them. We studied street tree (among other species, Cordyline australis, Fraxinus excelsior and F. pensylvanica) barks as biological collectors of these ubiquitous airborne particles in cities. Properties were determined by the environmental magnetism method, inductively coupled plasma optical emission spectrometry and scanning electron microscopy, and analyzed by geostatistical methods. Trapped particles are characterized as low-coercivity (mean ± s.d. value of remanent coercivity Hcᵣ = 37.0 ± 2.4 mT) magnetite-like minerals produced by a common pollution source identified as traffic derived emissions. Most of these Fe rich particles are inhalable (PM₂.₅), as determined by the anhysteretic ratio χARM/χ (0.1–1 μm) and scanning electron microscopy (<1 μm), and host a variety of potentially toxic elements (Cr, Mo, Ni, and V). Contents of magnetic particles vary in the study area as observed by magnetic proxies for pollution, such as mass specific magnetic susceptibility χ (18.4–218 × 10⁻⁸ m³ kg⁻¹) and in situ magnetic susceptibility κᵢₛ (0.2–20.2 × 10⁻⁵ SI). The last parameter allows us doing in situ magnetic biomonitoring, being convenient because of species preservation, measurement time, and fast data processing for producing prediction maps of magnetic particle pollution.
اظهر المزيد [+] اقل [-]Nitrogen mineralisation in deciduous forest soils in south Sweden in gradients of soil acidity and deposition
1998
Falkengren-Grerup, U. | Brunet, J. | Diekmann, M. (Department of Plant Ecology, Ecology Building, Lund University, S-223 62 Lund (Sweden))
Species-Specific Responses to Ozone and Drought in Six Deciduous Trees
2015
Hayes, Felicity | Williamson, Jennifer | Mills, Gina
Saplings of alder (Alnus glutinosa), birch (Betula pendula), hazel (Corylus avellana), beech (Fagus sylvatica), ash (Fraxinus excelsior) and oak (Quercus robur) were exposed to five episodic ozone regimes in solardomes, with treatment means between 16 and 72 ppb. All trees were kept fully watered for the first 5 weeks of exposure, after which half the trees continued to be well-watered, whereas the other half were subjected to a moderate drought by applying approximately 45 % of the amount of water. Species-specific reductions in growth in response to both ozone and drought were found, which could result in reduced potential carbon sequestration in future ozone climates. In well watered conditions, the ozone treatments resulted in total biomass reductions for oak (18 %), alder (16 %), beech (15 %), ash (14 %), birch (14 %) and hazel (7 %) in the 72 ppb compared with the 32 ppb treatment. For beech, there was a reduction in growth in response to ozone in the well-watered treatment, but an increase in growth in response to ozone in the drought treatment, in contrast to the decreased growth that would occur as a result of stomatal closure in response to either the ozone or drought treatment, and therefore assumed to result from changes in hormonal signalling which could result in stomatal opening in combined ozone and drought conditions. For alder, in addition to a decrease in root biomass, there was reduced biomass of root nodules with high compared with low ozone for both drought-treated and well-watered trees. There was also a large reduction in the biomass of nodules from drought trees compared with well-watered. It is therefore possible that changes in the nitrogen dynamics of alder could occur due to reduced nodulation in both drought and elevated ozone conditions.
اظهر المزيد [+] اقل [-]Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE
2009
Weyens, Nele | Taghavi, Safiyh | Barac, Tanja | van der Lelie, Daniel | Boulet, Jana | Artois, Tom | Carleer, Robert | Vangronsveld, Jaco
Background, aim, and scope Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Materials and methods Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Results and discussion Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites was evaporating through the leaves to the atmosphere. Conclusions and perspectives The characterization of the isolates obtained in this study shows that the bacterial community associated with Oak and Ash on a TCE-contaminated site, was strongly enriched with TCE-tolerant strains. However, this was not sufficient to degrade all TCE before it reaches the leaves. A possible strategy to overcome this evapotranspiration to the atmosphere is to enrich the plant-associated TCE-degrading bacteria by in situ inoculation with endophytic strains capable of degrading TCE.
اظهر المزيد [+] اقل [-]The growth of planted trees subject to fumes from brickworks
1983
Gilbert, O.L. (Sheffield University, Sheffield (UK))