خيارات البحث
النتائج 1 - 7 من 7
Athabasca oil sands region snow contains efficient micron and nano-sized ice nucleating particles
2019
The Athabasca Oil Sands Region (AOSR) in Alberta, Canada, is an important source of atmospheric pollutants, such as aerosols, that have repercussions on both the climate and human health. We show that the mean freezing temperature of snow-borne particles from AOSR was elevated (−7.1 ± 1.8 °C), higher than mineral dust which freezes at ∼ −15 °C and is recognized as one of the most relevant ice nuclei globally. Ice nucleation of nanosized snow samples indicated an elevated freezing ability (−11.6 ± 2.0 °C), which was statistically much higher than snow-borne particles from downtown Montreal. AOSR snow had a higher concentration (∼2 orders of magnitude) of >100 nm particles than Montreal. Triple quadrupole ICP-(QQQ)-MS/MS analysis of AOSR and Montreal snow demonstrated that most concentrations of metals, including those identified as emerging nanoparticulate contaminants, were much more elevated in AOSR in contrast to Montreal: 34.1, 34.1, 16.6, 5.8, 0.3, 0.1, and 9.4 mg/m³ for Cr, Ni, Cu, As, Se, Cd, and Pb respectively, in AOSR and 1.3, 0.3, 2.0, <0.03, 0.1, 0.03, and 1.2 mg/m³ in Montreal snow. High-resolution Scanning Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (STEM-EDS) imaging provided evidence for various anthropogenic nano-materials, including carbon nanotubes resembling structures, in AOSR snow up to 7–25 km away from major oil sands upgrading facilities. In summary, particles characterized as coming from oil sands are more efficient at ice nucleation. We discuss the potential impacts of AOSR emissions on atmospheric and microphysical processes (ice nucleation and precipitation) both locally and regionally.
اظهر المزيد [+] اقل [-]Individual and Combined Effects of Freeze-Thaw and Ferrate(VI) Oxidation for the Treatment and Dewatering of Wastewater Sludges
2016
Diak, James | Örmeci, Banu
The study examined the individual and combined effects of potassium ferrate(VI) additions and freeze-thaw conditioning for the treatment and dewatering of sludge samples. The first part of the experiments, using primary sludge, compared potassium ferrate(VI) additions prior to freeze-thaw treatment (pretreatment) versus potassium ferrate(VI) additions following freeze-thaw treatment (posttreatment). A low dose (LD) of 1.0 g/L and a high dose (HD) of 10.0 g/L of potassium ferrate(VI) were evaluated along with a freezing temperature of −20 °C and freezing periods of 1, 8 and 15 days. Following the designated freezing period, the samples were removed from the freezer and thawed at room temperature for 12 h. The second part of the study, using anaerobically digested sludge, evaluated the effects of potassium ferrate(VI) pretreatment, using LD = 0.5 g/L and HD = 5.0 g/L, and used simulated drainage beds to separate meltwater from the sludge cake during the thawing period. The study demonstrated that stand-alone freeze-thaw can reduce faecal coliform by >3-log after being frozen for only 1 day, and pretreatment with potassium ferrate(VI) can be used to improve the effects of freeze-thaw on faecal coliform inactivation in sludge. Furthermore, the drainability of the sludge following freeze-thaw was not significantly deteriorated when potassium ferrate(VI) was added to the sludge prior to freezing, despite greater than fourfold increases in the concentrations of soluble proteins and soluble carbohydrates. The meltwater collected during the sludge thawing was approximately 85 % of the initial sludge volume. When 5 g/L of potassium ferrate(VI) was added to the sludge prior to freezing, the meltwater collected had <0.28 MPN/mL faecal coliform, the turbidity was <10 NTU and the pH was 9.1. Pretreatment with potassium ferrate(VI) also reduced the concentration of faecal coliform in the sludge cake, suggesting that freeze-thaw coupled with potassium ferrate(VI) additions can be used to stabilise sludge and reduce sludge volume.
اظهر المزيد [+] اقل [-]Release of Carbon and Nitrogen from Alpine Soils During Thawing Periods in the Eastern Qinghai-Tibet Plateau
2015
Gao, Yongheng | Zeng, Xiaoyang | Xie, Qingyan | Ma, Xingxing
Soil thawing can affect the turnover of soil carbon (C) and nitrogen (N) and their release into the atmosphere. However, little has been known about the release of C and N during the thawing of alpine soils in the Qinghai-Tibet Plateau. This study investigated the effects of soil thawing on the release of CO₂, CH₄, and N₂O from alpine peatland soils and alpine meadow soils through an indoor experiment and determined the changes in the dissolved organic C (DOC), dissolved organic N (DON), NO₃ ⁻-N, NH₄ ⁺-N, and NO₂ ⁻-N concentrations in the soils after soil thawing. The freeze–thaw treatments were performed by incubating the soil columns at mild (−5 °C) and severe (−15 °C) for 14 days, and then at 5 °C for 18 days. The control columns were incubated at 5 °C. During thawing, the cumulative CO₂ emissions from the severely frozen alpine peatland soils and alpine meadow soils were 36 and 85 % higher than those from the control soils, and the cumulative N₂O emissions were 3.9 and 5.8 times higher than those from the control soils. However, the thawing after mild freezing produced no significant effects. The two freezing temperatures significantly increased the release of CH₄ from the alpine peatland soils, but the thawing of the severely frozen soils reduced the CH₄ uptake of the alpine meadow soils by 27 %. After the severely frozen alpine peatland soils thawed, the concentrations of DOC, DON, NO₃ ⁻-N, NH₄ ⁺-N, and NO₂ ⁻-N increased significantly, but NO₂ ⁻-N showed no significant changes for the alpine meadow soils. After thawing with mild freezing, DOC in the alpine peatland soils and NH₄ ⁺-N, NO₂ ⁻-N, and DOC in the alpine meadow soils showed no significant changes. This study indicates that the potential for release of C and N from alpine soils during thawing periods strongly depends on the freezing temperature and soil types.
اظهر المزيد [+] اقل [-]Oxygen Demand of Aircraft and Airfield Pavement Deicers and Alternative Freezing Point Depressants
2012
Corsi, Steven R. | Mericas, Dean | Bowman, George T.
Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.
اظهر المزيد [+] اقل [-]Impacts of different freeze-thaw treatments on the adsorption and desorption behaviors of Cd in black soil
2020
Wang, Quanying | Sun, Jingyue | Yu, Hongwen
Seasonal freeze-thaw cycle (FTC) is one of the key processes that affect heavy metal behaviors in soil. However, previous studies are mainly focused on extreme FTC treatments which may exaggerate the real FTC effects in the field. This study aimed to compare the effects of different FTC conditions on the adsorption and desorption behaviors of Cd in the surface black soil. Different minimum freezing temperatures (− 2, − 5, and − 15 °C), FTC rates (1 and 20 °C h⁻¹), freezing lengths (2 and 24 h), and FTC frequencies (1, 3, and 9) were investigated. The thawing temperature was set at 5 °C. The amplitude for the FTC rate, length, and frequency experiments ranged from 5 to − 2 °C. Our results indicated that the adsorption amounts of Cd presented an order of − 2 °C > − 15 °C > − 5 °C and 24 h > 2 h for different FTC amplitude- and freezing length-treated soils, and the adsorption amounts decreased with increasing FTC rate and frequency. Soil maximum adsorption amount of Cd increased with the increases of FTC frequency, freezing length, and FTC rate, while it decreased with the decreases of freezing temperature. Soil Cd desorption ratio decreased with the increases of FTC frequency, freezing length, and TFC rate, and it increased with the increasing freezing temperature. Our results suggested that FTC conditions can significantly influence the adsorption and desorption behaviors of heavy metal in soil.
اظهر المزيد [+] اقل [-]A margin of exposure approach to assessment of non-cancerous risk of diethyl phthalate based on human exposure from bottled water consumption
2015
Zare Jeddi, Maryam | Rastkari, Noushin | Ahmadkhaniha, Reza | Yunesian, Masud | Nabizadeh, Ramin | Daryabeygi, Reza
Phthalates may be present in food due to their widespread presence as environmental contaminants or due to migration from food contact materials. Exposure to phthalates is considered to be potentially harmful to human health as well. Therefore, determining the main source of exposure is an important issue. So, the purpose of this study was (1) to measure the release of diethyl phthalate (DEP) in bottled water consumed in common storage conditions specially low temperature and freezing conditions; (2) to evaluate the intake of DEP from polyethylene terephthalate (PET) bottled water and health risk assessment; and (3) to assess the contribution of the bottled water to the DEP intake against the tolerable daily intake (TDI) values. DEP migration was investigated in six brands of PET-bottled water under different storage conditions room temperature, refrigerator temperature, freezing conditions (40 °C ,0 °C and −18 °C) and outdoor] at various time intervals by magnetic solid extraction (MSPE) using gas chromatography–mass spectroscopy (GC-MS). Eventually, a health risk assessment was conducted and the margin of exposure (MOE) was calculated. The results indicate that contact time with packaging and storage temperatures caused DEP to be released into water from PET bottles. But, when comprising the DEP concentration with initial level, the results demonstrated that the release of phthalates were not substantial in all storage conditions especially at low temperatures (<25 °C) and freezing conditions. The daily intake of DEP from bottled water was much lower than the reference value. However, the lowest MOE was estimated for high water consumers (preschooler > children > lactating women > teenagers > adults > pregnant women), but in all target groups, the MOE was much higher than 1000, thus, low risk is implied. Consequently, PET-bottled water is not a major source of human exposure to DEP and from this perspective is safe for consumption.
اظهر المزيد [+] اقل [-]Degradation of deicing chemicals affects the natural redox system in airfield soils
2014
Lissner, Heidi | Wehrer, Markus | Jartun, Morten | Totsche, Kai Uwe
During winter operations at airports, large amounts of organic deicing chemicals (DIC) accumulate beside the runways and infiltrate into the soil during spring. To study the transport and degradation of DIC in the unsaturated zone, eight undisturbed soil cores were retrieved at Oslo airport, Norway, and installed as lysimeters at a nearby field site. Before snowmelt in 2010 and 2011, snow amended with a mix of the DICs propylene glycol (PG) and formate as well as bromide as conservative tracer was applied. Water samples were collected and analyzed until summer 2012. Water flow and solute transport varied considerably among the lysimeters but also temporally between 2010 and 2011. High infiltration rates during snowmelt resulted in the discharge of up to 51 and 82 % PG in 2010 and 2011, respectively. The discharge of formate remained comparatively low, indicating its favored degradation even at freezing temperatures compared with PG. Manganese (Mn) and iron (Fe) were observed in the drainage in autumn owing to the anaerobic degradation of residual PG during summer. Our findings suggest that upper boundary conditions, i.e., snow cover and infiltration rate, and the extent of preferential flowpaths, control water flow and solute transport of bromide and PG during snowmelt. PG may therefore locally reach deeper soil regions where it may pose a risk for groundwater. In the long term, the use of DIC furthermore causes the depletion of potential electron acceptors and the transport of considerable amounts of Fe and Mn. To avoid an overload of the unsaturated zone with DIC and to maintain the natural redox system, the development of suitable remediation techniques is required.
اظهر المزيد [+] اقل [-]