خيارات البحث
النتائج 1 - 10 من 120
The association of co-exposure to polycyclic aromatic hydrocarbon and phthalates with blood cell-based inflammatory biomarkers in children: A panel study النص الكامل
2022
Zhao, Lei | Liu, Miao | Liu, Linlin | Guo, Wenting | Yang, Huihua | Chen, Shuang | Yu, Jie | Li, Meng | Fang, Qin | Lai, Xuefeng | Yang, Liangle | Zhang, Xiaomin
The association of co-exposure to polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) with blood cell-based inflammatory biomarkers is largely unknown. We conducted a panel study of 144 children aged 4–12 years, with up to 3 repeated visits across 3 seasons. For each visit, we collected the first-morning urine for 4 consecutive days and fasting blood on the day of physical examination. We developed a gas chromatography/tandem mass spectrometry method to detect the metabolites of 10 PAHs (OH-PAHs) and 10 PAEs (mPAEs) in urine samples. We employed linear mixed-effects models to evaluate the individual associations of each OH-PAH and mPAE with blood cell-based inflammatory biomarkers over different lag times. Bayesian kernel machine regression (BKMR) and quantile g-computation were used to evaluate the overall associations of OH-PAHs and mPAEs mixtures with blood cell-based inflammatory biomarkers. After multiple adjustments, we found positive associations of summed hydroxylphenanthrene (∑OHPHE), summed OH-PAHs, and mono-n-butyl phthalate with inflammatory biomarkers such as neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the systemic immune-inflammation index (SII) at lag 0 (the day of physical examination). Each 1% increase in ∑OHPHE was related to a 0.18% (95% confidence interval: 0.10%, 0.25%) increase in SII, which was the strongest among the above associations. The results of BKMR and quantile g-computation suggested that co-exposure to PAHs and PAEs mixture was associated with an elevated white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and SII, to which ∑OHPHE and 1-hydroxypyrene (1-OHPYR) might be the major contributors. In addition, gender and age modified the associations of ∑OHPHE and 1-OHPYR with inflammatory biomarkers, where girls and younger children were more susceptible. In conclusion, co-exposure to PAHs and PAEs was associated with elevated inflammation in children, in which ∑OHPHE and 1-OHPYR might play important roles.
اظهر المزيد [+] اقل [-]ALS risk factors: Industrial airborne chemical releases النص الكامل
2022
Andrew, Angeline | Zhou, Jie | Gui, Jiang | Shi, Xun | Li, Meifang | Harrison, Antoinette | Guetti, Bart | Nathan, Ramaa | Butt, Tanya | Peipert, Daniel | Tischbein, Maeve | Pioro, Erik P. | Stommel, Elijah | Bradley, Walter
Most amyotrophic lateral sclerosis (ALS) cases are sporadic (∼90%) and environmental exposures are implicated in their etiology. Large industrial facilities are permitted the airborne release of certain chemicals with hazardous properties and report the amounts to the US Environmental Protection Agency (EPA) as part of its Toxics Release Inventory (TRI) monitoring program. The objective of this project was to identify industrial chemicals released into the air that may be associated with ALS etiology. We geospatially estimated residential exposure to contaminants using a de-identified medical claims database, the SYMPHONY Integrated Dataverse®, with ∼26,000 nationally distributed ALS patients, and non-ALS controls matched for age and gender. We mapped TRI data on industrial releases of 523 airborne contaminants to estimate local residential exposure and used a dynamic categorization algorithm to solve the problem of zero-inflation in the dataset. In an independent validation study, we used residential histories to estimate exposure in each year prior to diagnosis. Air releases with positive associations in both the SYMPHONY analysis and the spatio-temporal validation study included styrene (false discovery rate (FDR) 5.4e-5), chromium (FDR 2.4e-4), nickel (FDR 1.6e-3), and dichloromethane (FDR 4.8e-4). Using a large de-identified healthcare claims dataset, we identified geospatial environmental contaminants associated with ALS. The analytic pipeline used may be applied to other diseases and identify novel targets for exposure mitigation. Our results support the future evaluation of these environmental chemicals as potential etiologic contributors to sporadic ALS risk.
اظهر المزيد [+] اقل [-]Serum concentrations of per-/polyfluoroalkyl substances and its association with renal function parameters among teenagers near a Chinese fluorochemical industrial plant: A cross-sectional study النص الكامل
2022
Xie, Lin-Na | Wang, Xiao-Chen | Su, Li-Qin | Ji, Sai-Sai | Dong, Xiao-Jie | Zhu, Hui-Juan | Hou, Sha-Sha | Wang, Cong | Li, Zhen-Huan | Dong, Bing | Zhu, Ying
Currently, studies on the association between per-/polyfluoroalkyl substances (PFAS) concentrations and the renal function of residents, especially teenagers, living near fluorochemical industrial plants, are relatively rare, and not all these studies suggested associations. In this cross-sectional study, 775 local teenagers (11–15 years old) were included, and serum concentrations of 18 PFAS were measured. Perfluorooctanoic acid (PFOA) was found to be the dominant PFAS with a concentration of 22.3–3310 ng/mL (mean = 191 ng/mL), accounting for 71.5–99.1% of ΣPFAS. Statistical analyses demonstrated that internal exposure of perfluoroalkyl carboxylic acids (PFCA, C8–C10) was related to the plant. In addition, the prevalence rate of chronic kidney disease (CKD) (35.0%) in the participants was relatively high. A significantly positive association was observed between the increase in PFOA concentration and increasing risk of CKD (OR = 1.741; 95% CI: 1.004, 3.088; p = 0.048) by adjusting for gender, age, body mass index (BMI), and household income. Similar positive correlation was also observed in PFHpA with CKD (OR = 1.628, 95% CI: 1.031, 2.572; p = 0.037). However, no significant correlation was observed for concentrations of other PFAS and CKD (p > 0.05). Furthermore, linear regression analyses demonstrated that none of the PFAS concentrations were significantly correlated with estimated glomerular filtration rate (eGFR) or urine albumin/urine creatinine ratio (ACR) (p > 0.05). However, a significantly negative correlation was observed between PFOA concentration and abnormal ACR (β = −0.141, 95% CI: −0.283, 0.001; p = 0.048) after stratifying by CKD. Sensitivity analyses further confirmed these results. This cross-sectional study is the first, to our knowledge, to investigate the association between PFAS concentrations and renal function in teenagers living near a Chinese industrial plant. Further prospective and metabonomic studies are needed to interpret the results and clarify the biological mechanisms underlying this association.
اظهر المزيد [+] اقل [-]Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis النص الكامل
2021
Xu, Ping | Liu, Aiping | Li, Fengna | Tinkov, Alexey A. | Liu, Longjian | Zhou, Ji-Chang
Four most concerned heavy metal pollutants, arsenic, cadmium, lead, and mercury may share common mechanisms to induce metabolic syndrome (MetS). However, recent studies exploring the relationships between MetS and metal exposure presented inconsistent findings. We aimed to clarify the relationship between heavy metal exposure biomarkers and MetS using a meta-analysis and systematic review approach. Literature search was conducted in international and the Chinese national databases up to June 2020. Of selected studies, we extracted the relevant data and evaluated the quality of each study’s methodology. We then calculated the pooled effect sizes (ESs), standardized mean differences (SMDs), and their 95% confidence intervals (CIs) using a random-effect meta-analysis approach followed by stratification analyses for control of potential confounders. Involving 55,536 participants, the included 22 articles covered 52 observational studies reporting ESs and/or metal concentrations on specific metal and gender. Our results show that participants with MetS had significantly higher levels of heavy metal exposure [pooled ES = 1.16, 95% CI: 1.09, 1.23; n = 42, heterogeneity I² = 75.6%; and SMD = 0.22, 95% CI: 0.15, 0.29; n = 32, I² = 94.2%] than those without MetS. Pooled ESs in the subgroups stratified by arsenic, cadmium, lead, and mercury were 1.04 (95% CI: 0.97, 1.10; n = 8, I² = 61.0%), 1.10 (0.95, 1.27; 11, 45.0%), 1.21 (1.00, 1.48; 12, 82.9%), and 1.26 (1.06, 1.48; 11, 67.7%), respectively. Pooled ESs in the subgroups stratified by blood, urine, and the other specimen were 1.22 (95% CI: 1.08, 1.38; n = 26, I² = 75.8%), 1.06 (1.00, 1.13; 14, 58.1%), and 2.41 (1.30, 4.43; 2, 0.0%), respectively. In conclusion, heavy metal exposure was positively associated with MetS. Further studies are warranted to examine the effects of individual metals and their interaction on the relationship between MetS and heavy metals.
اظهر المزيد [+] اقل [-]Exposure to polycyclic aromatic hydrocarbons, DNA methylation and heart rate variability among non-current smokers النص الكامل
2021
Liu, Kang | Jiang, Jing | Lin, Yuhui | Liu, Wei | Zhu, Xiaoyan | Zhang, Yizhi | Jiang, Haijing | Yu, Kuai | Liu, Xuezhen | Zhou, Min | Yuan, Yu | Long, Pinpin | Wang, Qiuhong | Zhang, Xiaomin | He, Meian | Chen, Weihong | Kwok, Woon | Wu, Tangchun
Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with heart rate variability (HRV) reduction, a widely used marker of cardiovascular autonomic dysfunction. The role of DNA methylation in the relationship between PAHs exposure and decreased HRV is largely unknown. This study aims to explore epigenome-wide DNA methylation changes associated with PAHs exposure and further evaluate their associations with HRV alternations among non-current smokers. We measured 10 mono-hydroxylated PAHs (OH-PAHs) in urine and DNA methylation levels in blood leukocytes among participants from three panels of Chinese non-current smokers (152 in WHZH, 99 in SY, and 53 in COW). We conducted linear regression analyses between DNA methylation and OH-PAHs metabolites with adjustment for age, gender, body mass index, drinking, blood cell counts, and surrogate variables in each panel separately, and combined the results by using inverse-variance weighted fixed-effect meta-analysis to obtain estimates of effect size. The median value of total OH-PAHs ranged from 0.92 × 10⁻² in SY panel (62.6% men) to 13.82 × 10⁻² μmol/mmol creatinine in COW panel (43.4% men). The results showed that methylation levels of cg18223625 (COL20A1) and cg07805771 (SLC16A1) were significantly or marginally significantly associated with urinary 2-hydroxynaphthalene [β(SE) = 0.431(0.074) and 0.354(0.068), FDR = 0.016 and 0.056, respectively], while methylation level of cg09235308 (PLEC1) was positively associated with urinary total OH-PAHs [β(SE) = 0.478(0.079), FDR = 0.004]. Hypermethylations of cg18223625, cg07805771, and cg09235308 were inversely associated with HRV indices among the WHZH and COW non-current smokers. However, we did not observe significant epigenome-wide associations for the other 9 urinary OH-PAHs. These findings provide new evidence that PAHs exposure is linked to differential DNA methylation, which may help better understand the influences of PAHs exposure on HRV alternations.
اظهر المزيد [+] اقل [-]Determination of six groups of mycotoxins in Chinese dark tea and the associated risk assessment النص الكامل
2020
Chinese dark tea is widely enjoyed for its multiple health-promoting effects and pleasant taste. However, its production involves fermentation by microbiota in raw tea, some of which are filamentous fungi and thus potential mycotoxin producers. Accordingly, whether mycotoxins pose health risk on dark tea consumption has become a public concern. In this study, a cleaning method of multi-functional column (MFC) and immunoaffinity column (IAC) in tandem combined to HPLC detection was developed and validated for determining ten mycotoxins of six groups (i.e., aflatoxins of B₁, B₂, G₁ and G₂, ochratoxin A, zearalenone, deoxynivalenol, fumonisins of B₁, B₂, and T-2) in dark teas. The interferences from secondary metabolites were effectively reduced, and the sensitivities and recoveries of the method were qualified for tea matrices. Six groups mycotoxins were determined in 108 samples representing the major Chinese dark teas by using the new method. Subsequently, the dietary exposure and health risks were evaluated for different age and gender groups in Kunming and Pu’er in China and Ulan Bator in Mongolia. The occurrence of zearalenone was 4.63% and that of ochratoxin A was 1.85%, with the other four groups mycotoxins were below the limits of quantification. The hazard index values for the five groups’ non-carcinogenic mycotoxins were far below 1.0. The deterministic risk assessment indicated no non-carcinogenic risks for dark tea consumption in the three areas. Probabilistic estimation showed that the maximum value of 95th percentile carcinogenic risk value for the aflatoxins was 2.12 × 10⁻⁸, which is far below the acceptable carcinogenic risk level (10⁻⁶). Hereby, six groups mycotoxins in Chinese dark tea showed no observed risk concern to consumers.
اظهر المزيد [+] اقل [-]The euryhaline pygmy mussel, Xenostrobus securis, is a useful biomonitor of key metal contamination in the highly urbanised Sydney Estuary, Australia النص الكامل
2019
Markich, Scott J. | Jeffree, Ross A.
This study critically evaluated the native pygmy mussel (Xenostrobus securis) as a biomonitor of the key metal contaminants in the highly urbanised Sydney Estuary, south-eastern Australia. Five metals (Cd, Cr, Cu, Pb and Zn) were identified as key contaminants, based on their enrichment factors (EFs) in the whole soft tissue of X. securis at 24 sampling sites, relative to baseline values from near-pristine reference sites in the adjacent Hawkesbury Estuary. Inverse relationships established between mussel size (dry tissue weight) and tissue concentrations of each metal were used to reduce variance (by 4-fold) among individuals; gender and reproductive status had no significant (p > 0.05) effect on tissue metal concentrations in X. securis. Metal concentrations in three environmental matrices – filtered (<0.2 μm) surface water (operationally defined as the dissolved/colloidal phase), suspended particulate matter (SPM; >0.2 μm) and surface sediment (<2 mm particle size), which are most relevant to a suspension-feeding estuarine bivalve, were also determined at each sampling site. For each of the five metals, highly significant (p < 0.01) positive linear regressions were established between metal EFs for mussel tissue and each environmental matrix. Metals in surface sediment and SPM explained 80–91% and 81–90%, respectively, of the variability in metal concentrations in mussel tissue, with filtered surface water explaining 74–86%. Cumulative mussel tissue EFs of all five metals, when regressed against each environmental matrix, showed that surface sediment concentrations explained 93% of their variability between sites, SPM 94% and filtered surface water 87–90%. Hence, X. securis very closely reflects the metal concentrations in its aquatic environment. The study provides a quality-assured benchmark of key metal contamination in the Sydney Estuary, and an appropriate methodology that may be used to discern any changes in metal contaminant status using X. securis.
اظهر المزيد [+] اقل [-]Urinary bisphenol analogues and triclosan in children from south China and implications for human exposure النص الكامل
2018
Chen, Yi | Fang, Jianzhang | Ren, Lu | Fan, Ruifang | Zhang, Jianqing | Liu, Guihua | Zhou, Li | Chen, Dingyan | Yu, Yingxin | Lu, Shaoyou
Bisphenols and triclosan (TCS) are widely used in consumer products. However, knowledge on human exposure to these anthropogenic chemicals has remained limited in China, especially for children. In this study, concentrations of seven bisphenols and TCS were determined in 283 urine samples collected from South China children aged between 3 and 11 years old. Bisphenol A (BPA), bisphenol S (BPS) and TCS were frequently detected in urine samples, with a detection rate of 93%, 89%, and 95%, respectively. Urinary concentrations of Σ7BPs (the sum concentrations of the seven bisphenols) ranged from 0.43 to 31.5 μg/L, with a median value of 0.91 μg/L, while TCS concentrations ranged from < limit of quantification to 21.9 μg/L (median: 0.21 μg/L). BPA was the predominant analogue (median: 0.35 μg/L), accounting for 49.8% of Σ7BPs. The urinary BPA concentrations in children from Guangzhou were significantly greater than those from Shenzhen. Correlation analysis suggested that multiple exposure sources to South China children likely existed for BPA, BPS, and TCS. Age, but not gender, was negatively associated with urinary residues of BPA and BPS (p < 0.05) and positively with TCS concentrations (p < 0.05). The estimated daily intake of Σ7BPs (23.9 ng/kg bw/day) or TCS (5.63 ng/kg bw/day) was below the tolerant reference dose of BPA, indicating no considerable health hazard to South China children.
اظهر المزيد [+] اقل [-]Bioaccumulation of organic pollutants in Indo-Pacific humpback dolphin: A review on current knowledge and future prospects النص الكامل
2018
Sanganyado, Edmond | Rajput, Imran Rashid | Liu, Wenhua
Indo-Pacific humpback dolphin (Sousa chinensis) are chronically exposed to organic pollutants since they inhabit shallow coastal waters that are often impacted by anthropogenic activities. The aim of this review was to evaluate existing knowledge on the occurrence of organic pollutants in Indo-Pacific humpback dolphins, identify knowledge gaps, and offer recommendations for future research directions. We discussed the trends in the bioaccumulation of organic pollutants in Indo-Pacific humpback dolphins focusing on sources, physicochemical properties, and usage patterns. Furthermore, we examined factors that influence bioaccumulation such as gender, age, dietary intake and tissue-specific distribution. Studies on bioaccumulation in Indo-Pacific humpback dolphin remain scarce, despite high concentrations above 13,000 ng/g lw we previously detected for PFOS, ∑PBDE and chlorinated paraffins. The maximum concentration of organochlorines detected was 157,000 ng/g wt. Furthermore, variations in bioaccumulation were shown to be caused by factors such as usage patterns and physicochemical properties of the pollutant. However, restrictions in sampling inhibit investigations on exposure pathway and toxicity of organic pollutants in Indo-Pacific humpback dolphin. We proposed the use of biopsy sampling, predictive bioaccumulation and toxicity modeling, and monitoring other emerging contaminants such as microplastics and pharmaceuticals for future health risk assessment on this critically endangered marine mammal species.
اظهر المزيد [+] اقل [-]Environmental and lifestyle factors affecting exposure to polycyclic aromatic hydrocarbons in the general population in a Middle Eastern area النص الكامل
2018
Hoseini, Mohammad | Nabizadeh, Ramin | Delgado-Saborit, Juana Maria | Rafiee, Ata | Yaghmaeian, Kamyar | Parmy, Saeid | Faridi, Sasan | Hassanvand, Mohammad Sadegh | Yunesian, Masud | Naddafi, Kazem
The aim of this study was to investigate environmental and lifestyle factors affecting exposure to PAHs in the general population in a large city of the Middle East (Tehran) by measuring urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) and establishing relationships between PAHs exposure and related factors. Urine samples were collected from 222 randomly chosen subjects who were living in the urban area of Tehran, Iran. Subjects were required to complete a detailed questionnaire aimed to document their personal and sociodemographic information, activities, cooking-related appliances, smoking history/exposure, and consumed foodstuff. Identification and quantification of six OH-PAHs was carried out using a gas chromatography with mass spectrometry (GC-MS). The geometric means for 1-OHP, 1-NAP, 2-NAP, 2-FLU, 9-FLU, and 9-PHE for whole population study were 310, 1220, 3070, 530, 330, and 130 ng/g creatinine, respectively. The two naphthalene metabolites contributed on average 77% of the total concentration of six measured OH-PAHs, followed by the 2-FLU, 1-OHP, 9-FLU, and 9-PHE. The most important predictors of urinary PAHs were consumption of grilled/barbecued foods, smoking, and exposure to environmental tobacco smoking. Water pipe smoking was linked to urinary OH-PAH metabolite in a dose-response function. Residential traffic was also related with OH-PAH metabolite concentrations. Other factors including gender, age, exposure to common house insecticides, open burning, and candle burning were found to be statistically associated with the urinary levels of some OH-PAHs. High exposure to PAHs among general population in Middle Eastern large cities and its associated health implications calls for public health measures to reduce PAHs exposure.
اظهر المزيد [+] اقل [-]