خيارات البحث
النتائج 1 - 10 من 363
Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
اظهر المزيد [+] اقل [-]Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila
2022
Liu, Hsin-Ping | Cheng, Jack | Chen, Mei-Ying | Chuang, Tsai-Ni | Dong, Jhou-Ciang | Liu, Chuan-Hsiu | Lin, Wei-Yong
Facing the challenge of global microplastics (MPs) pollution, full characterization of MPs biohazards is urgent. Recent intensive studies revealed that the toxicity depends on the material, size, and exposure concentration of MP. To better elucidate MPs biohazards, we investigated the impact of polystyrene-MPs of size 0.1 μm at a low dose of 50 μg/L on the neuromuscular, retinal, and reproductive phenotypes of fruit fly model, by voltage-clamped electrophysiology, electroretinogram, and reproductive assay, respectively. We found that MPs decreased the frequency of spontaneous junction currents of synapse and altered the receptor potential amplitude of the retina. Furthermore, MPs lowered the rate of embryo-laying of fruit flies. The differential gene expression of ligand-receptor interaction, endocytosis, phototransduction, and Toll/Imd signaling pathways might underlie these MPs-induced phenotypes. These findings call for further investigation on the potential biohazards of low-dose MPs.
اظهر المزيد [+] اقل [-]Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes
2022
Gao, Lepeng | Zhang, Chang | Yu, Sicong | Liu, Shuang | Wang, Guoxia | Lan, Hainan | Zheng, Xin | Li, Suo
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP₃R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca²⁺]ᵢ) levels and mitochondrial Ca²⁺ ([Ca²⁺]ₘ) , increasing the ER Ca²⁺ ([Ca²⁺]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial–ER interactions caused by MBP exposure in vitro.
اظهر المزيد [+] اقل [-]PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes
2022
Davidsen, Nichlas | Ramhøj, Louise | Lykkebo, Claus Asger | Kugathas, Indusha | Poulsen, Rikke | Rosenmai, Anna Kjerstine | Evrard, Bertrand | Darde, Thomas A. | Axelstad, Marta | Bahl, Martin Iain | Hansen, Martin | Chalmel, Frederic | Licht, Tine Rask | Svingen, Terje
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
اظهر المزيد [+] اقل [-]Transcriptome sequencing and metabolite analysis reveal the toxic effects of nanoplastics on tilapia after exposure to polystyrene
2021
Plastic particles, which are formed from routinely used plastics and their fragments, have become a new pollutant raising widespread concern about their potential effects. Several studies have been conducted to examine their toxicity, but the effects of nano-sized plastic fragments on freshwater organisms remain largely unclear and need to be further investigated. In this study, larval tilapia were first exposed to 100 nm polystyrene nanoparticles (PS-NPs, 20 mg/L) for seven days and then returned to freshwater without PS-NPs for another seven days in order to determine the toxic effects of PS-NPs at both transcriptomic and metabolomic levels. A total of 203 significantly changed metabolites, and 2,152 differentially expressed unigenes were identified between control and PS-NP treatment groups, control and recovery groups, as well as treatment and recovery groups. Our data suggested that PS-NPs induced abnormal metabolism of glycolipids, energy, and amino acids in tilapia after short-term exposure. Additionally, PS-NPs caused disturbed signaling, as suggested by the transcriptomic results. Different transcriptomic and metabolomic levels between the treatment group and recovery group indicated a persistent impact of PS-NPs on tilapia. The presence of adhesion molecule-related differentially expressed genes (DEGs) suggested that PS-NPs might cause early inflammatory responses. Notably, the detection of chemical stimulus involved in the sensory perception of smell was the most severely impacted biological process. Our work systemically studied the ecotoxicity of nano-sized plastics in aquatic creatures at the molecular and genetic levels, serving as a basis for future investigations on the prevention and treatment of such pollutants.
اظهر المزيد [+] اقل [-]Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP)
2021
Zhang, Xin | Tang, Xuexi | Yang, Yingying | Sun, Zijie | Ma, Wenqian | Tong, Xin | Wang, Chengmin | Zhang, Xinxin
The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC₅₀ value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.
اظهر المزيد [+] اقل [-]Epigenetic silencing of TET1 mediated hydroxymethylation of base excision repair pathway during lung carcinogenesis
2021
Chen, Hong-qiang | Chen, Dong-jiao | Li, Yan | Yuan, Wen-bo | Fan, Jun | Zhang, Zhe | Han, Fei | Jiang, Xiao | Chen, J. P. (Jian-ping) | Wang, Dan-dan | Cao, Jia | Liu, Jin-yi | Liu, Wen-bin
The methylcytosine dioxygenase Ten-eleven translocation 1 (TET1) is an important regulator for the balance of DNA methylation and hydroxymethylation through various pathways. Increasing evidence has suggested that TET1 probably involved in DNA methylation and demethylation dysregulation during chemical carcinogenesis. However, the role and mechanism of TET1 during lung cancer remains unclear. In this study, we found that TET1 expression was significantly down-regulated and the methylation level was significantly up-regulated in 3-methylcholanthrene (3-MCA) induced cell malignant transformation model, rat chemical carcinogenesis model, and human lung cancer tissues. Demethylation experiment further confirmed that DNA methylation negatively regulated TET1 gene expression. TET1 overexpression inhibited cell proliferation, migration and invasion in vitro and in vivo, while knockdown of TET1 resulted in an opposite phenotype. DNA hydroxymethylation level in the promoter region of base excision repair (BER) pathway key genes XRCC1, OGG1, APEX1 significantly decreased and the degree of methylation gradually increased in malignant transformed cells. After differential expression of TET1, the level of hydroxymethylation, methylation and expression of these genes also changed significantly. Furthermore, TET1 binds to XRCC1, OGG1, and APEX1 to maintain them hydroxymethylated. Blockade of BER pathway key gene alone or in combination significantly diminished the effect of TET1. Our study demonstrated for the first time that TET1 expression is regulated by DNA methylation and TET1-mediated hydroxymethylation regulates BER pathway to inhibit the proliferation, migration and invasion during 3-MCA-induced lung carcinogenesis. These results suggested that TET1 gene can be a potential biomarker and therapy target for lung cancer.
اظهر المزيد [+] اقل [-]Enantioselective residues and toxicity effects of the chiral triazole fungicide hexaconazole in earthworms (Eisenia fetida)
2021
Liu, Tong | Fang, Kuan | Liu, Yalei | Zhang, Xiaolian | Han, Lingxi | Wang, Xiuguo
The enantioselective toxic effect and environmental behavior of chiral pesticides have attracted increasing research attention. In this study, the enantioselective toxicity and residues of hexaconazole (HEX) in earthworms (Eisenia fetida) were investigated. In the present study, significant enantioselective degradation characteristics were observed in artificial soil with the R-enantiomer preferentially degrading (p < 0.05); however, no significant enantioselective bioaccumulation was observed in the earthworms (p > 0.05). The acute toxicity of S-(+)-HEX was higher than that of R-(−)-HEX in earthworms, with 48-h LC₅₀ values of 8.62 and 22.35 μg/cm², respectively. At 25 mg/kg, enantiospecific induction of oxidative stress was observed in earthworms; moreover, S-(+)-HEX had a greater influence on the contents of malonaldehyde, cytochrome P450, and 8-hydroxy-2-deoxyguanosine than R-(−)-HEX. These results were consistent with those of the enrichment analysis of differentially expressed genes. The transcriptome sequencing results showed that S-(+)-HEX had a more significant influence on steroid biosynthesis, arachidonic acid metabolism, and cell cycle processes than R-(−)-HEX, leading to abnormal biological function activities. These results indicate that S-(+)-HEX may pose a higher risk to soil organisms than R-(−)-HEX. This study suggests that the environmental risk of chiral pesticides to nontarget organisms should be assessed at the enantiomeric level.
اظهر المزيد [+] اقل [-]PCB52 exposure alters the neurotransmission ligand-receptors in male offspring and contributes to sex-specific neurodevelopmental toxicity
2020
Zhao, Dong | Wang, Qi | Zhou, Wen-Tao | Wang, Li-Bin | Yu, Hao | Zhang, Kai-Kai | Chen, Li-Jian | Xie, Xiao-Li
Polychlorinated biphenyls (PCBs) in the air are predominantly the less chlorinated congeners. Non-dioxin-like (NDL) low-chlorinated PCBs are more neurotoxic, and cause neurodevelopmental and neurobehavioral alterations in humans. However, the underlying mechanisms for this neurodevelopmental toxicity remain unknown. In the present study, Wistar rats were treated by gavage with PCB52 (1 mg/kg body weight) or corn oil from gestational day 7 to postnatal day 21. Both the body lengths and weights of the suckling rats at birth were significantly decreased by PCB52 treatment, suggesting developmental toxicity. Although no obvious histopathological changes were observed in the brain, using RNA-sequencing, 208 differentially expressed genes (DEGs) were identified in the striatum of PCB52-treated male offspring, while just 13 DEGs were identified in female offspring, suggesting sex-specific effects. Furthermore, using Gene Ontology enrichment analysis, neurodevelopmental processes, neurobehavioral alterations, and neurotransmission changes were enriched from the 208 DEGs in male offspring. Similarly, using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, neuroactive ligand receptor interactions and multiple synapse pathways were enriched in male offspring, implying dysfunction of the neurotransmission system. Reductions in the protein expressions of these ligand receptors were also identified in the striatum, cerebral cortex, and hippocampus using western blotting methods. Taken together, our findings indicate that PCB52 exposure during gestation and lactation results in the abnormal expression of neurotransmission ligand-receptors in male offspring with a sex bias, and that this may contribute to neurodevelopmental toxicity.
اظهر المزيد [+] اقل [-]Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver
2020
Jiao, Yaqi | Tao, Yue | Yang, Yang | Diogene, Tuyiringire | Yu, Hui | He, Ziqing | Han, Wei | Chen, Zhaobo | Wu, Pan | Zhang, Ying
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
اظهر المزيد [+] اقل [-]