خيارات البحث
النتائج 1 - 10 من 1,305
Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos النص الكامل
2024
Liu, Lulu | Wang, Fengzhong | Zhang, Zhong | Fan, Bei | Luo, Ying | Li, Ling | Zhang, Yifan | Yan, Zhihui | Kong, Zhiqiang | Francis, Frédéric | Li, Minmin
peer reviewed | Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L−1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life. © 2024 Elsevier Ltd
اظهر المزيد [+] اقل [-]Comparison between the mechanisms of Clearfield ® wheat and Lolium rigidum multiple resistant to acetyl CoA carboxylase and acetolactate synthase inhibitors النص الكامل
2022
Vázquez-García, José G. | de Portugal, Joao | Torra, Joel | Osuna, Maria D. | Palma-Bautista, Candelario | Cruz-Hipólito, Hugo E. | De Prado, Rafael
Clearfield® wheat (Triticum aestivum) have helped eliminate the toughest grasses and broadleaf weeds in Spain since 2005. This crop production system includes other tolerant cultivars to the application of imidazolinone (IMI) herbicides. However, the continuous use and off-label rates of IMI herbicides can contribute to the development of resistance in Lolium rigidum and other weed species. In this research, the main objectives were to study the resistance mechanisms to acetolactate synthase (ALS) and acetyl coenzyme A carboxylase (ACCase) inhibitors in a L. rigidum accession (LrR) from a Clearfield® wheat field, with a long history rotating these IMI-tolerant crops and compare them with those present in the IMI-tolerant wheat. The resistance to ACCase inhibitors in LrR was due to point mutations (Ile1781Leu plus Asp2078Gly) of the target site gene plus an enhanced herbicide metabolism (EHM), on the other hand, in wheat accessions was due only by EHM. Mechanisms involved in the resistance to ALS inhibitors were both point mutations of the target gene and EHM in the IMI-tolerant wheat, while only evidence of mutation (Trp574Leu) was found in the multiple herbicide resistant L. rigidum accession. This research demonstrates that if crop rotation is not accompanied by the use of alternative sites of action in herbicide-tolerant crops, resistant weeds to herbicide to which crops are tolerant, can easily be selected. Moreover, repeated and inappropriate use of Clearfield® crops and herbicide rotations can lead to the evolution of multiple resistant weeds, as shown in this study, and have also inestimable environmental impacts.
اظهر المزيد [+] اقل [-]Health risks of phthalates: A review of immunotoxicity النص الكامل
2022
Zhang, Ying | Lyu, Liang | Tao, Yue | Ju, Hanxun | Chen, Jie
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
اظهر المزيد [+] اقل [-]Effects of biochar addition on the fate of ciprofloxacin and its associated antibiotic tolerance in an activated sludge microbiome النص الكامل
2022
Oh, Seungdae | Kim, Youngjun | Choi, Donggeon | Park, Ji Won | Noh, Jin Hyung | Chung, Sang-Yeop | Maeng, Sung Kyu | Cha, Chang-Jun
This study investigated the effects of adding biochar (BC) on the fate of ciprofloxacin (CIP) and its related antibiotic tolerance (AT) in activated sludge. Three activated sludge reactors were established with different types of BC, derived from apple, pear, and mulberry tree, respectively, and one reactor with no BC. All reactors were exposed to an environmentally relevant level of CIP that acted as a definitive selective pressure significantly promoting AT to four representative antibiotics (CIP, ampicillin, tetracycline, and polymyxin B) by up to two orders of magnitude. While CIP removal was negligible in the reactor without BC, the BC-dosed reactors effectively removed CIP (70–95% removals) through primarily adsorption by BC and biodegradation/biosorption by biomass. The AT in the BC-added reactors was suppressed by 10–99%, compared to that without BC. The BC addition played a key role in sequestering CIP, thereby decreasing the selective pressure that enabled the proactive prevention of AT increase. 16S rRNA gene sequencing analysis showed that the BC addition alleviated the CIP-mediated toxicity to community diversity and organisms related to phosphorous removal. Machine learning modeling with random forest and support vector models using AS microbiome data collectively pinpointed Achromobacter selected by CIP and strongly associated with the AT increase in activated sludge. The identification of Achromobacter as an important AT bacteria revealed by the machine learning modeling with multiple models was also validated with a linear Pearson's correlation analysis. Overall, our study highlighted Achromobacter as a potential useful sentinel for monitoring AT occurring in the environment and suggested BC as a promising additive in wastewater treatment to improve micropollutant removal, mitigate potential AT propagation, and maintain community diversity against toxic antibiotic loadings.
اظهر المزيد [+] اقل [-]Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells النص الكامل
2022
Huang, Jiyan | Ren, Hang | Tan, Annie | Li, Ting | Wang, Hongxia | Jiang, Lianlian | Zheng, Shaokai | Qi, Han | Ji, Binyan | Wang, Xipei | Qu, Jianhua | Zhao, Jianya | Qiu, Lianglin
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5–10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
اظهر المزيد [+] اقل [-]13C assimilation as well as functional gene abundance and expression elucidate the biodegradation of glyphosate in a field experiment النص الكامل
2022
Wirsching, Johannes | Wimmer, Benedikt | Ditterich, Franziska | Schlögl, Johanna | Martin-Laurent, Fabrice | Huhn, Carolin | Haderlein, Stefan | Kandeler, Ellen | Poll, Christian
Glyphosate (N-phosphonomethylglycine; GLP) and its main metabolite AMPA (aminomethylphosphonic acid), are frequently detected in relatively high concentrations in European agricultural topsoils. Glyphosate has a high sorption affinity, yet it can be detected occasionally in groundwater. We hypothesized that shrinkage cracks occurring after dry periods could facilitate GLP transport to greater depths where subsoil conditions slow further microbial degradation. To test this hypothesis, we simulated a heavy rainfall event (HRE) on a clay-rich arable soil. We applied 2.1 kg ha⁻¹ of 100% ¹³C₃, ¹⁵N-labeled GLP one day before the simulated rainfall event. Microbial degradation of translocated GLP over a 21-day period was assessed by quantifying ¹³C incorporation into phospholipid fatty acids. Microbial degradation potential and activity were determined by quantifying the abundance and expression of functional genes involved in the two known degradation pathways of GLP; to AMPA (goxA) or sarcosine (sarc). We confirmed that goxA transcripts were elevated in the range of 4.23 x 10⁵ copy numbers g⁻¹ soil only one day after application. The increase in AMPA associated with a rise in goxA transcripts and goxA-harboring microorganisms indicated that the degradation pathway to AMPA dominated. Based on ¹³C-enrichment 3 h after the HRE, fungi appeared to initiate glyphosate degradation. At later time points, Gram⁺-bacteria proved to be the main degraders due to their higher ¹³C-incorporation. Once GLP reached the subsoil, degradation continued but more slowly. By comparing GLP distribution and its microbial degradation in macropores and in the bulk soil, we demonstrated different time- and depth-dependent GLP degradation dynamics in macropores. This indicates the need for field studies in which soil properties relevant to GLP degradation are related to limiting environmental conditions, providing a realistic assessment of GLP fate in soils.
اظهر المزيد [+] اقل [-]Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea النص الكامل
2022
Sabatino, Raffaella | Cabello-Yeves, Pedro J. | Eckert, Ester M. | Corno, Gianluca | Callieri, Cristiana | Brambilla, Diego | Dzhembekova, Nina | Moncheva, Snejana | Di Cesare, Andrea
Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.
اظهر المزيد [+] اقل [-]Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis النص الكامل
2022
Chen, Dan | Zhao, Xingyi | Huang, Fu | Guan, Xiaoju | Tian, Jing | Ji, Minpeng | Wen, Xin | Shao, Jingjing | Xie, Jiajia | Wang, Jiexia | Chen, Haolin
Bisphenol A (BPA) is widely used by manufacturers and in consumer products. Its release in the environment may affect male reproductive function. In this study, we examined the effect of low dose (0.1 mg/kg BW), short term exposure during puberty (PD21-35) on adult rat male reproduction. The results indicated that such exposure reset growth hormone (GH) and follicular stimulating hormone (FSH) homeostasis and resulted in a significantly higher level of serum testosterone without affecting serum luteinizing hormone level. QPCR and Western blot results showed that BPA significantly up-regulated selective genes/proteins in the Leydig cell steroidogenic pathway, including steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A, and low-density lipoprotein receptor. RNA-Seq analysis of testicular RNAs showed that BPA significantly affected the gene profiles of multiple testicular interstitial populations without affecting germ cells. Also, GO- and KEGG-analysis suggested that IGF1-related PI3K/AKT signaling was activated, which was confirmed by the increased phosphorylation of IRS1, AKT1 and CREB. The results indicated that a low-dose, short-term BPA exposure during puberty affected the adult male rat pituitary (GH and FSH) and testis (testosterone) homeostasis.
اظهر المزيد [+] اقل [-]Remarkable characteristics and distinct community of biofilms on the photoaged polyethylene films in riverine microcosms النص الكامل
2022
Huang, Hexinyue | Liu, Peng | Shi, Yanqi | Wu, Xiaowei | Gao, Shixiang
Recalcitrant plastics in the environment are gradually fragmented into weathered debris distinguished from their original state by the integrative action of influencing factors, such as UV light, heating and physical abrasion. As new artificial carbon-source substrates in aquatic ecosystems, plastic products can be colonized by biofilms and even utilized by microorganisms. To investigate the influences of weathering of plastics on the colonized biofilms, freshwater samples from the Yangtze River (Nanjing, China) were collected for biofilm incubation. Based on the characterization of plastics and biofilms, the effects of plastic surface properties on biofilm characteristics were revealed by the analysis of partial least squares regression (PLSR). Roughness was the principal influencing factor, while rigidity had the opposite effect to it. 16S rRNA gene high-throughput sequencing results indicated the high relative abundance of Cyanobacteria and rising proportion of harmful components (e.g., Flavobacterium) on photoaged polyethylene plastics. The microbial functional profiles (KEGG) predicted by Tax4Fun showed that the functions (e.g., membrane transport, energy metabolism, etc.) of biofilm on photoaged plastics were dissimilar with those on original ones. These findings suggested that the distinct microbial community and the adverse functional changes in biofilms on photoaged plastics potentially enhanced their environmental risks. On the other hand, 28-day cultured biofilms on original low-density polyethylene (LDPE) films were dominated by Exiguobacterium. The previously ignored potentials of this microorganism in rapidly accommodating to a hydrophobic substrate and its plastic degrading ability were both worthy of attention. Therefore, it is necessary to consider the weathering process of plastics in exploring the “plastisphere”, and to give further insights into the double-edged nature of the “plastisphere".
اظهر المزيد [+] اقل [-]Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR النص الكامل
2022
Yu, Jing | Zhu, Hui | Shutes, B. (Brian) | Wang, Xinyi
The development of saline-alkali lands has contributed to the increasing discharge of alkaline salt-laden wastewater, which poses a threat to aquatic organisms. However, the comprehensive effect of alkaline salt on Microcystis aeruginosa, a harmful cyanobacterium, remains unclear. In this study, the growth, physiology, cell ultrastructure and production of microcystin-LR (MC-LR) in Microcystis aeruginosa exposed to four levels of alkaline salt stress were evaluated. The growth of Microcystis aeruginosa was stimulated at an electrical conductivity (EC) of 2.5 mS/cm compared to the control, as supported by the increased cell density, photosynthetic pigment and protein contents. Microcystis aeruginosa could tolerate a certain level of alkaline salt (i.e., EC of 5 mS/cm) via increasing photosynthetic pigment contents to protect cells from alkaline salt stress, but the antioxidant defence system and cell ultrastructure were not affected. When EC increased to 7.5 mS/cm, alkaline salt caused oxidative stress and toxicity in Microcystis aeruginosa, as evidenced by analysis of the integrated biomarker response (IBR). Furthermore, the photosynthetic pigment and protein contents decreased, and cell apoptosis associated with ultrastructural changes was observed. Therefore, we propose that EC of 7.5 mS/cm is a threshold for growth of Microcystis aeruginosa. Additionally, the intracellular MC-LR content was stimulated by alkaline salt, and the highest value was observed at EC of 2.5 mS/cm. The extracellular MC-LR content increased with the increasing alkaline salt concentration. When EC was 7.5 mS/cm, the extracellular MC-LR content was significantly higher than in the control and was associated with the upregulated mcyH gene. This study recommends that more attention should be paid to the risk of Microcystis aeruginosa bloom and microcystin-LR pollution in lakes located in salinization regions.
اظهر المزيد [+] اقل [-]