خيارات البحث
النتائج 1 - 10 من 17
High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China
2017
Zheng, Ji | Gao, Ruixia | Wei, Yuanyuan | Chen, Tao | Fan, Jiqing | Zhou, Zhenchao | Makimilua, Tiimub Benjamin | Jiao, Yanan | Chen, Hong
The rapid human activities and urbanization exacerbate the human health risks induced by antibiotic resistance genes (ARGs). In this study, the profiling of ARGs was investigated using high-throughput qPCR from water samples of 13 catchment areas in East Tiaoxi River, China. High prevalence of ARGs indicated significant antibiotic resistance pollution in the research area (absolute abundance: 6.1 × 108–2.1 × 1010 copies/L; relative abundance: 0.033–0.158 copies/cell). Conventional water qualities (COD, TN, TP, NH3-N), bacterial communities and mobile gene elements (MGEs) were detected and analyzed as factors of ARGs shift. Nutrient and MGEs showed positive correlation with most ARGs (P < 0.05) and bacteria community was identified as the key contributing factor driving ARGs alteration. With the land-use study and field investigation, country area, especially arable, was expected as a high spot for ARGs shift and pathogen breeding. Comparing to environmental background, promotion of ARGs and marked shift of bacterial community were observed in country and urban city areas, indicating that human activities may lead to the spread of ARGs. Analysis of factors affecting ARGs in this study may shed new light on the mechanism of the maintenance and propagation of ARGs in urban rivers.
اظهر المزيد [+] اقل [-]Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent
2016
Ory, Jérôme | Bricheux, Geneviève | Togola, Anne | Bonnet, Jean-Louis | Donnadieu-Bernard, Florence | Nakusi, Laurence | Forestier, Christiane | Traore, Ousmane
Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model.During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6′)-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins).In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains.Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater and question the role of environmental biofilms communities as efficient shelters for hospital-released resistance genes.
اظهر المزيد [+] اقل [-]Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts
2017
Disinfectant used in drinking water treatment and distribution system can induce culturable bacteria, including various kinds of pathogenic bacteria, into viable but non-culturable (VBNC) state. The loss of cultural state, resuscitation and environmental persistence of VBNC bacteria will severely damage drinking water microbiological safety and thus pose a risk to public health. The manner in which chlorination treatment induced a VBNC state in Escherichia coli and the antibiotic persistence of VBNC bacteria was investigated. It was found that low dosage of chlorine (0.5 mg L−1) disinfection effectively reduced the culturability of E. coli and induced a VBNC state, after which metabolic activity was reduced and persistence to 9 typical antibiotics was enhanced. Furthermore, RT-qPCR results showed that stress resistance genes (rpoS, marA, ygfA, relE) and ARGs, especially efflux genes were up-regulated compared with culturable cells. The intracellular concentration was tested and found to be lower in VBNC cells than in actively growing E. coli, which suggested a higher efflux rate. The data presented indicate that VBNC E. coli are more persistent than culturable counterparts to a wide variety of antibiotics. VBNC E. coli constitute a potential source of contamination and should be considered during monitoring of drinking water networks.
اظهر المزيد [+] اقل [-]Characterization and quantification of antibiotic resistance genes in manure of piglets and adult pigs fed on different diets
2017
Lu, Xiao-Ming | Li, Wenfeng | Li, Chao-Ben
Studies have shown that pig manure is a reservoir of antibiotic resistance genes (ARGs). However, little is known about the characteristics of ARGs in the manure of piglets and adult pigs fed on different diets. In the present study, the ARG characteristics of the manure of piglets and adult pigs fed on different diets (feed, grain) were analyzed using high-throughput fluorescence quantitative PCR. Correlations between heavy metals, antibiotics, and ARGs in pig manure were analyzed. The results showed that the heavy metal and antibiotic contents in the manure of pigs receiving feed significantly exceeded those in the manure of pigs receiving grain. The heavy metal and antibiotic contents were higher in manure of piglets than in that of adult pigs. Feed significantly increased the ARG diversity in the pig manure. The ARG diversity was higher in manure of piglets than in that of adult pigs. In the manure of pigs receiving feed, 25 (from piglets), 12 (from adult pigs) ARGs were enriched significantly compared with pig fed with grain. In particular, sat4 (in piglets) and vatE-01 (in adult pigs) showed the highest enrichment, being increased by 59 and 19-fold, respectively. The ARG diversity correlated positively with the concentrations of antibiotics and heavy metals in the manure.
اظهر المزيد [+] اقل [-]Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes
2017
Li, Shuai | Zhang, Shenghua | Ye, Chengsong | Lin, Xiongxiang | Zhang, Menglu | Chen, Lihua | Li, Jinmei | Yu, Xin
Antibiotics are heavily used in Chinese mariculture, but only a small portion of the added antibiotics are absorbed by living creatures. Biofilm processes are universally used in mariculture wastewater treatment. In this study, removal of antibiotics (norfloxacin, rifampicin, and oxytetracycline) from wastewater by moving bed biofilm reactors (MBBRs) and the influence of antibiotics on reactor biofilm were investigated. The results demonstrated that there was no significant effect of sub-μg/L–sub-mg/L concentrations of antibiotics on TOC removal. Moreover, the relative abundance of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in MBBR biofilm increased because of selective pressure of antibiotics. In addition, antibiotics decreased the diversity of the biofilm bacterial community and altered bacterial community structure. These findings provide an empirical basis for the development of appropriate practices for mariculture, and suggest that disinfection and advanced oxidation should be applied to eliminate antibiotics, ARGs, and ARB from mariculture wastewater.
اظهر المزيد [+] اقل [-]Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters
2017
Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens.
اظهر المزيد [+] اقل [-]Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots
2017
Pérez-Palacios, Patricia | Romero-Aguilar, Asunción | Delgadillo, Julián | Doukkali, Bouchra | Caviedes, Miguel A. | Rodríguez-Llorente, Ignacio D. | Pajuelo, Eloísa
Excess copper (Cu) in soils has deleterious effects on plant growth and can pose a risk to human health. In the last decade, legume-rhizobium symbioses became attractive biotechnological tools for metal phytostabilization. For this technique being useful, metal-tolerant symbionts are required, which can be generated through genetic manipulation.In this work, a double symbiotic system was engineered for Cu phytostabilization: On the one hand, composite Medicago truncatula plants expressing the metallothionein gene mt4a from Arabidopsis thaliana in roots were obtained to improve plant Cu tolerance. On the other hand, a genetically modified Ensifer medicae strain, expressing copper resistance genes copAB from Pseudomonas fluorescens driven by a nodulation promoter, nifHp, was used for plant inoculation. Our results indicated that expression of mt4a in composite plants ameliorated plant growth and nodulation and enhanced Cu tolerance. Lower levels of ROS-scavenging enzymes and of thiobarbituric acid reactive substances (TBARS), such as malondialdehyde (a marker of lipid peroxidation), suggested reduced oxidative stress. Furthermore, inoculation with the genetically modified Ensifer further improved root Cu accumulation without altering metal loading to shoots, leading to diminished values of metal translocation from roots to shoots. The double modified partnership is proposed as a suitable tool for Cu rhizo-phytostabilization.
اظهر المزيد [+] اقل [-]Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications
2016
Bajaj, Priyanka | Kanaujia, Pawan Kumar | Singh, Nambram Somendro | Sharma, Shalu | Kumar, Shakti | Virdi, Jugsharan Singh
Quinolone and β-lactam antibiotics constitute major mainstay of treatment against infections caused by pathogenic Escherichia coli. Presence of E. coli strains expressing co-resistance to both these antibiotic classes in urban aquatic environments which are consistently being used for various anthropogenic activities represents a serious public health concern. From a heterogeneous collection of 61 E. coli strains isolated from the river Yamuna traversing through the National Capital Territory of Delhi (India), those harboring bla CTX₋M₋₁₅ (n = 10) or bla CMY₋₄₂ (n = 2) were investigated for co-resistance to quinolones and the molecular mechanisms thereof. Resistance was primarily attributed to amino acid substitutions in the quinolone resistance-determining regions (QRDRs) of GyrA (S83L ± D87N) and ParC (S80I ± E84K). One of the E. coli strains, viz., IPE, also carried substitutions in GyrB and ParE at positions Ser492→Asn and Ser458→Ala, respectively. The phenotypically susceptible strains nevertheless carried plasmid-mediated quinolone resistance (PMQR) gene, viz., qnrS, which showed co-transfer to the recipient quinolone-sensitive E. coli J53 along with the genes encoding β-lactamases and led to increase in minimal inhibitory concentrations of quinolone antibiotics. To the best of our knowledge, this represents first report of molecular characterization of quinolone co-resistance in E. coli harboring genes for ESBLs or AmpC β-lactamases from a natural aquatic environment of India. The study warrants true appreciation of the potential of urban aquatic environments in the emergence and spread of multi-drug resistance and underscores the need to characterize resistance genetic elements vis-à-vis their public health implications, irrespective of apparent phenotypic resistance.
اظهر المزيد [+] اقل [-]Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea
2016
Kim, Song Yeob | Kuppusamy, Saranya | Kim, Jang-hwan | Yoon, Young-Eun | Kim, Kwon-Rae | Lee, Yong Bok
Reports on the occurrence and diversity of antibiotic-resistant bacteria and genes, which are considered to be emerging pollutants worldwide, have, to date, not been published on South Korean agricultural soils. This is the first study to investigate the persistence of tetracycline (oxytetracycline, tetracycline, and chlortetracycline)-resistant bacterial community and genes in natural and long-term fertilized (NPK, pig, and cattle manure composts) agricultural soils in South Korea. The results showed that oxytetracycline and chlortetracycline could be the dominant residues in animal manures; regular fertilization of manures, particularly pig manures, may be the prime cause for the spread and abundance of tetracycline resistance in South Korean agricultural soils. Both the country’s natural and agricultural soils are reservoirs of antibiotic-resistant species. Of the 113 tetracycline-resistant isolates identified (19 typical bacterial genera and 36 distinct species), approximately 40 to 99 % belonged to Gram-positive bacteria and Bacillus constituted the predominant genera. Of the 24 tet genes targeted, tetG, tetH, tetK, tetY, tetO, tetS, tetW, and tetQ were detected in all soil samples, highlighting their predominance and robust adaptability in soils. Meanwhile, it is suggested that tetC, tetE, tetZ, tetM, tetT, and tetP(B) are the common residues in pig manures, and furthermore, the treatment of soils with pig manures may wield a different impact on the tet gene resistome in agricultural soils. This study thus highlights the necessity for regulating the usage of tetracyclines in South Korean animal farming. This must be followed by proper monitoring of the subsequent usage of animal manures especially that derived from pig farms located in agricultural soils.
اظهر المزيد [+] اقل [-]Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113
2019
Arriel-Elias, Marina Teixeira | de Carvalho Barros Côrtes, Marcio Vinicius | de Sousa, Thatyane Pereira | Chaibub, Amanda Abdallah | de Filippi, Marta Cristina Corsi
Leaf blast is the main rice disease in the world causing significant losses in productivity. Blast integrate management (BIM) requires the use of genetic resistance, cultural practices, and chemical control, although for sustainable BIM, the insertion of biological agents may be the fourth component for. The objective of this work was to test three formulations of Burkholderia pyrrocinia (BRM32113) previously selected and to verify the effectiveness in resistance induction and blast control in rice. Two experiments were carried out, in a completely randomized design with three replications, in the greenhouse (E1 and E2). E1 aimed to select the best treatment for suppressing leaf blast severity and activating plant defense mechanisms. It was composed of 8 treatments: (1) formulated 11+ B. pyrrocina × Magnaporthe oryzae; (2) formulated 17+ B. pyrrocina × M. oryzae; (3) formulated 32+ B. pyrrocina × M. oryzae; (4) formulated 11 × M. oryzae; (5) B. pyrrocinia 17 × M. oryzae; (6) formulated 32 × M. oryzae; (7) B. pyrrocina × M. oryzae; (8) M. oryzae; (9) control (water). E2 aimed to investigate the effect of the best treatments, for the promotion of plant growth and suppression of leaf blast by calculating AUDPC. It was composed of 6 treatments: (1) formulated 11+ B. pyrrocina × M. oryzae; (2) formulated 32+ B. pyrrocina × M. oryzae; (3) formulated 11 × M. oryzae; (4) formulated 32 × M. oryzae; (5) B. pyrrocina × M. oryzae; (6) water. And after, we did two assays aimed to localize this biological agent after application at seed, soil, and rice plant. In E1, formulated 11+ B. pyrrocinia and 32+ formulated and B. pyrrocina were the best, suppressing leaf blast by up to 97% and providing the significant increase of the enzymes β-1,3-glucanase, chitinase, phenylalanine ammonia lyase, lipoxygenase, and salicylic acid at 24 h and 48 h after inoculation with M. oryzae. In E2, treatments formulated 11+ B. pyrrocinia, formulated 32+ B. pyrrocinia, and B. pyrrocina provided more significant increases in growth promotion and reduced area under disease progress curve. B. pyrrocinia was detected in the rice plant for 18 days, predominantly in the root system (internal and external). The use of B. pyrrocinia formulations based on sugarcane molasses and glycerol can be an essential strategy for sustainable management. Although all the benefits come from these sustainable formulations, the adoption by commercial biological segment depends on an established formulation process. It seems that all the results showed here by this research will be readily assimilated by startups of the organic segment.
اظهر المزيد [+] اقل [-]