خيارات البحث
النتائج 1 - 10 من 12
Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water
2021
Po, Beverly H.K. | Wood, Chris M.
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na₂SO₄, KCl, K₂SO₄, CaCl₂, CaSO₄, MgCl₂, MgSO₄, NaHCO₃, KHCO₃) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO₃/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO₃⁻ salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na⁺ and K⁺ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
اظهر المزيد [+] اقل [-]Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassius auratus using oxidative stress biomarkers
2012
Chen, Fang | Gao, Jie | Zhou, Qixing
The objective of this study was to assess potential toxic effects of simulated urban runoff on Carassius auratus using oxidative stress biomarkers. The activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the content of malondialdehyde (MDA) in the liver of C. auratus were analyzed after a 7-, 14- and 21-day exposure to simulated urban runoff containing galaxolide (HHCB) and cadmium (Cd). The results showed that the activity of antioxidant enzymes and the content of MDA increased significantly exposed to the simulated urban runoff containing HHCB alone or mixture of HHCB and Cd. The activity of the investigated enzymes and the content of MDA then returned to the blank level over a longer period of exposure. The oxidative stress could be obviously caused in the liver of C. auratus under the experimental conditions. This could provide useful information for toxic risk assessment of urban runoff.
اظهر المزيد [+] اقل [-]First record of microplastic occurence at the commercial fish from Orontes River
2022
Kiliç, Ece | Yücel, Nebil | Mübarek Şahutoğlu, Seycan
Freshwater environments are more sensitive to anthropogenic influences and usually contain higher concentrations of pollutants than marine environments. Microplastic pollution causes additional stress on freshwater animals; yet, studies evaluating the microplastic occurrence in freshwater biota are still limited. In this study, microplastic occurrence in the gastrointestinal tracts (GIT) and gill of commercial fish species (Prussian carp Carassius gibelio (Bloch, 1782); Abu mullet Planiliza abu (Heckel, 1843); Common carp Cyprinus carpio Linnaeus, 1758; European ell Anguilla Anguilla (Linnaeus, 1758); North African catfish Clarias gariepinus (Burchell, 1822); Goldfish Carassius auratus (Linnaeus, 1758) were reported from Orontes River. MPs abundance in the GIT and gill of six species were found as 5.1 ± 2 MPs fish⁻¹ and 4.4 ± 2 MPs fish⁻¹ with an occurrence of 95% and 74%, respectively. The majority of extracted microplastics were fiber, black and less than 1000 μm in size. FTIR analysis determined the main polymer types as polyester (50%), high-density polyethylene (HDPE) (10%), polypropylene (PP) (8%) and polyethylene terephthalate (PET) (5%). High MPs abundance and frequency of occurence indicate the exposure of microplastic pollution in freshwater biota which could threat the health of both individuals and consumers. Results obtained in this study will increase the acknowledgement of MPs pollution in the Orontes River. Also, this study will provide data to the administrators to set up necessary legislations in freshwater ecosystems.
اظهر المزيد [+] اقل [-]The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: a multifaceted analysis
2021
Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 μM and 25 μM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.
اظهر المزيد [+] اقل [-]Characteristics of bacterial community and ARGs profile in engineered goldfish tanks with stresses of sulfanilamide and copper
2021
Tiimub, Benjamin Makimilua | Zhou, Zhen-chao | Zhu, Lin | Liu, Yang | Shuai, Xin-Yi | Xu, Lan | Niyungeko, Christophe’ | Meng, Ling-Xuan | Sun, Yu-Jie | Chen, Hong
Abuse of antibiotics in aquaculture have been alarming and might aggravate spread of resistance genes in the environment. Holistic ARGs proliferation checks require deeper analyses of coupled absolute abundances in 16S rRNA bacteria communities at the phylum level to detect biomarkers. Sulfanilamide (sul) and copper II sulfate (CuSO₄ II) were, therefore, designed and added as separate or combined treatments in 9 replicate engineered goldfish tanks comprising 3 individual sul, 3 CuSO₄ II, 3 (sul + CuSO₄ II) combinations, and 3 controls within 180 days. The DNA from water and fish guts was sequenced under qPCR to determine 16S rRNA bacteria biomarkers co-occurring with the correspondent ARGs. Combined chemical addition at 0.8–1.5 mg sul + 0.5–1.0 mg CuSO₄ II/3 L of tank waters reduced sequenced 16S rRNA bacteria absolute abundances in fish gut and water samples while portraying the biomarkers. Absolute abundances of the entire 16S rRNA bacteria was higher in fish guts (3.4 × 10¹⁴–4.9 × 10⁸ copies/g) than water samples (1.5 × 10⁹–2.6 × 10¹⁵ copies/L), respectively. Much as sul 1(log) were dominant over intl 1(log) genes, and their fundamental profiles were also higher in the fish guts than water samples; the Spearman’s correlation analyses revealed positive relationship (p < 0.01 and r = 0.873) among the biomarkers of both ARG pairs at the phylum level and the physicochemical parameters. In the fish gut and water samples ratios, Bacteroidetes (10–85:12–85%) > Proteobacteria (10–50:15–65%) > Planktomycetes (10–52:8–25%) featured prominently based on LEfSe use as the hot-spotted biomarkers, hence justifying its higher prospects towards innovative environmental microbiological and biotechnological studies.
اظهر المزيد [+] اقل [-]Potential mechanisms of Na+/K+-ATPase attenuation by heat and pesticides co-exposure in goldfish: role of cellular apoptosis, oxidative/nitrative stress, and antioxidants in gills
2022
Lacy, Brittney | Rahman, Md Sadequr | Rahman, Md Saydur
In this study, we examined the dose-dependent effects of an environmentally relevant pesticide cocktail (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) and temperature change (22 vs. 32 °C for 4-week exposure) on Na⁺/K⁺-ATPase, 3-nitrotyrosine protein (NTP), dinitrophenyl protein (DNP), catalase (CAT), and superoxide dismutase (SOD) expressions in gills of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to gill in elevated temperature (32 °C) and pesticide co-exposure groups, including fusion of secondary lamellae, club-shaped primary lamellae, rupture of epithelial layer, loss of normal architecture, and hemorrhaging. Immunohistochemical and qRT-PCR analyses showed significant decreases in Na⁺/K⁺-ATPase protein and mRNA expressions in gills exposed to higher temperature and pesticides; however, combined exposure to heat and pesticides significantly increases NTP, DNP, CAT, and SOD expressions. In situ TUNEL assay revealed elevated levels of apoptotic cells in response to combined exposure. Collectively, our results suggest the combined effects of heat and pesticide stress cause cellular damage, upregulate oxidative/nitrative stress biomarkers, and increase apoptotic cells, downregulate Na⁺/K⁺-ATPase expression in gills. This provides new evidence for oxidant/antioxidant-dependent mechanisms for downregulation of Na⁺/K⁺-ATPase expression in gills during combined exposure.
اظهر المزيد [+] اقل [-]Multistress effects on goldfish (Carassius auratus) behavior and metabolism
2016
Gandar, Allison | Jean, Séverine | Canal, Julie | Marty-Gasset, Nathalie | Gilbert, Franck | Laffaille, Pascal
Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L⁻¹ and MIX2 = 42 μg L⁻¹). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton’s condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.
اظهر المزيد [+] اقل [-]Modulation of 17β-estradiol induced estrogenic responses in male goldfish (Carassius auratus) by benzo[a]pyrene and ketoconazole
2016
Yan, Zhenhua | Lü, Guanghua | Ye, Qiuxia | Liu, Jianchao
The aquatic environment is challenged with complex mixtures of chemicals that may interact biochemically with each other in non-target aquatic organisms through a combination of actions, resulting in unpredictable mixture toxicity. This study focuses on the interactive effects of chemicals, including benzo(a)pyrene (BaP) and ketoconazole (KCZ), on 17β-estradiol (E2)-induced estrogenic responses in male goldfish (Carassius auratus). The possible interactions between BaP or KCZ and E2 were investigated on the expression of cytochromeP4501A (CYP1A, biotransformation enzyme) and on its corresponding catalytic activity 7-ethoxyresorufin-O-deethylase (EROD activity), as well as on the expression of CYP19 (steroidogenic enzyme) and E2 bioaccumulation in liver. Exposure to E2 caused a significant increase in estrogenic responses corresponding with the E2 bioaccumulation. When comparing results to the E2 exposure group, co-exposure to BaP resulted in an increase in the cyp1a mRNA expression and its corresponding EROD activity and a marked decrease in the E2 bioaccumulation, but the expression of aromatase was not altered. Conversely, co-treatment with KCZ significantly suppressed the E2-modulated expression of metabolism and synthesis enzymes, which were accompanied by an increase in the E2 bioaccumulation. These data suggest that the modulation of E2-induced estrogenic responses by BaP and KCZ were correlated to the alterations of E2 bioaccumulation in goldfish, leading to a combination of changes in the capacity of biotransformation and steroidogenesis. The complex interactions between chemicals with different modes of actions highlight the need for caution in determining the safety of combined pollution in the aquatic environment.
اظهر المزيد [+] اقل [-]The pH-dependent toxicity of triclosan to five aquatic organisms (Daphnia magna, Photobacterium phosphoreum, Danio rerio, Limnodrilus hoffmeisteri, and Carassius auratus)
2018
Li, Chenguang | Qu, Ruijuan | Chen, Jing | Zhang, Shuo | Allam, AhmedA. | Ajarem, Jamaan | Wang, Zunyao
Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products, and it has been frequently detected in the aquatic environment. In the present study, the acute toxicity of TCS to Daphnia magna, Photobacterium phosphoreum, Danio rerio, and Limnodrilus hoffmeisteri was assessed under different pH conditions. Generally, TCS was more toxic to the four aquatic organisms in acidic medium. The LC₅₀ values for D. magna and D. rerio were smaller among the selected species, suggesting that D. magna and D. rerio were more sensitive to TCS. In addition, the oxidative stress-inducing potential of TCS was evaluated in Carassius auratus at three pH values. Changes of superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH) level, and malondialdehyde (MDA) content were commonly observed in all TCS exposure groups, indicating the occurrence of oxidative stress in the liver of C. auratus. The integrated biomarker response (IBR) index revealed that a high concentration of TCS induced great oxidative stress in goldfish under acidic condition. This work supplements the presently available data on the toxicity data of TCS, which would provide some useful information for the environmental risk assessment of this compound.
اظهر المزيد [+] اقل [-]Polychlorinated biphenyl (118) activates osteoclasts and induces bone resorption in goldfish
2014
Yachiguchi, Koji | Matsumoto, Noriko | Haga, Yuki | Suzuki, Motoharu | Matsumura, Chisato | Tsurukawa, Masahiro | Okuno, Toshihiro | Nakano, Takeshi | Kawabe, Kimi | Kitamura, Kei-ichiro | Toriba, Akira | Hayakawa, Kazuichi | Chowdhury, Vishwajit S. | Endo, Masato | Chiba, Atsuhiko | Sekiguchi, Toshio | Nakano, Masaki | Tabuchi, Yoshiaki | Kondo, Takashi | Wada, Shigehito | Mishima, Hiroyuki | Hattori, Atsuhiko | Suzuki, Nobuo
To analyze the effect of polychlorinated biphenyl (PCB) 118 on fish bone metabolism, we examined osteoclastic and osteoblastic activities, as well as plasma calcium levels, in the scales of PCB (118)-injected goldfish. In addition, effect of PCB (118) on osteoclasts and osteoblasts was investigated in vitro. Immature goldfish, in which the endogenous effects of sex steroids are negligible, were used. PCB (118) was solubilized in dimethyl sulfoxide at a concentration of 10 ppm. At 1 and 2 days after PCB (118) injection (100 ng/g body weight), both osteoclastic and osteoblastic activities, and plasma calcium levels were measured. In an in vitro study, then, both osteoclastic and osteoblastic activities as well as each marker mRNA expression were examined. At 2 days, scale osteoclastic activity in PCB (118)-injected goldfish increased significantly, while osteoblastic activity did not change significantly. Corresponding to osteoclastic activity, plasma calcium levels increased significantly at 2 days after PCB (118) administration. Osteoclastic activation also occurred in the marker enzyme activities and mRNA expressions in vitro. Thus, we conclude that PCB (118) disrupts bone metabolism in goldfish both in vivo and in vitro experiments.
اظهر المزيد [+] اقل [-]