خيارات البحث
النتائج 1 - 10 من 90
Global climatic changes: modelling the potential responses of agro-ecosystems with special reference to crop protection.
1995
Goudriaan J. | Zadoks J.C.
The potential role of temperate forests as sinks for CO(2): examples from the German environmental policy against global warming.
1992
Gregor H.D.
Gene cloning, expression, and reducing property enhancement of nitrous oxide reductase from Alcaligenes denitrificans strain TB النص الكامل
2018
Wang, Yu | Wang, Zeyu | Duo, Yankai | Wang, Xiaoping | Chen, Jianmeng | Chen, Jun
Nitrous oxide (N₂O) is a potent greenhouse gas and tends to accumulate as an intermediate in the process of bacteria denitrification. To achieve complete reduction of nitrogen oxide (NOₓ) in bacteria denitrification, the structural gene nosZ encoding nitrous oxide reductase (N₂OR) was cloned from Alcaligenes denitrificans strain TB (GenBank JQ044686). The recombinant plasmid containing the nosZ gene was built, and the expression of nosZ gene in Escherichia coli was determined. Results show that the nosZ gene consisting of 1917 nucleotides achieves heterologous expression successfully by codon optimization strategy under optimal conditions (pre-induction inoculum OD₆₀₀ of 0.67, final IPTG concentration of 0.5 mM, inducing time of 6 h, and inducing temperature of 28 °C). Determination result of gas chromatography confirms that N₂O degradation efficiency of recombinant E. coli is strengthened by at least 1.92 times compared with that of original strain TB when treated with N₂O as substrate. Moreover, N₂OR activity in recombinant strain is 2.09 times higher than that in wild strain TB, which validates the aforementioned result and implies that the recombinant E. coli BL21 (DE3)-pET28b-nosZ is a potential candidate to control N₂O accumulation and alleviate greenhouse effect. In addition, the N₂OR structure and the possible N₂O binding site in Alcaligenes sp. TB are predicted, which open an avenue for further research on the relationship between N₂OR activity and its structure.
اظهر المزيد [+] اقل [-]Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes النص الكامل
2013
Hu, Xiao-Kang | Su, Fang | Ju, Xiao-Tang | Gao, Bing | Oenema, O. (Oene) | Christie, Peter | Huang, Bin-Xiang | Jiang, Rong-Feng | Zhang, Fu-Suo
Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat–maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment, recommended fertilization, with and without straw and manure applications, and nitrification inhibitor and slow release urea. Application of N fertilizer slightly decreased CH4 uptake by soil. Direct N2O emissions derived from recommended urea application was 0.39% of the annual urea-N input. Both straw and manure had relatively low N2O emissions factors. Slow release urea had a relatively high emission factor. Addition of nitrification inhibitor reduced N2O emission by 55%. We conclude that use of nitrification inhibitors is a promising strategy for N2O mitigation for the intensive wheat–maize double cropping systems.
اظهر المزيد [+] اقل [-]Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China النص الكامل
2012
Liu, Shuwei | Zhang, Ling | Liu, Qiaohui | Zou, Jianwen
A complete accounting of net greenhouse gas balance (NGHGB) and greenhouse gas intensity (GHGI) affected by Fe(III) fertilizer application was examined in typical annual paddy rice-winter wheat rotation cropping systems in southeast China. Annual fluxes of soil carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) were measured using static chamber method, and the net ecosystem exchange of CO₂ (NEE) was determined by the difference between soil CO₂ emissions (RH) and net primary production (NPP). Fe(III) fertilizer application significantly decreased RH without adverse effects on NPP of rice and winter wheat. Fe(III) fertilizer application decreased seasonal CH₄ by 27–44%, but increased annual N₂O by 65–100%. Overall, Fe(III) fertilizer application decreased the annual NGHGB and GHGI by 35–47% and 30–36%, respectively. High grain yield and low greenhouse gas intensity can be reconciled by Fe(III) fertilizer applied at the local recommendation rate in rice-based cropping systems.
اظهر المزيد [+] اقل [-]Do lagoons near concentrated animal feeding operations promote nitrous oxide supersaturation النص الكامل
2009
Makris, Konstantinos C. | Sarkar, Dibyendu | Andra, Syam S. | Bach, Stephan B.H. | Datta, Rupali
Animal wastewater lagoons nearby concentrated animal feeding operations (CAFOs) represent the latest tendency in global animal farming, severely impacting the magnitude of greenhouse gas emissions, including nitrous oxide (N₂O). We hypothesized that lagoon wastewater could be supersaturated with N₂O as part of incomplete microbial nitrification/denitrification processes, thereby regulating the N₂O partitioning in the gaseous phase. The objectives of this study were: (i) to investigate the magnitude of dissolved N₂O concentrations in the lagoon; and (ii) to determine the extent to which supersaturation of N₂O occurs in wastewater lagoons. Dissolved N₂O concentrations in the wastewater samples were high, ranging from 0.4 to 40.5 μg N2O mL⁻¹. Calculated dissolved N₂O concentrations from the experimentally measured partition coefficients were much greater than those typically expected in aquatic systems (<0.6 μg N₂O mL⁻¹). Knowledge of the factors controlling the magnitude of N₂O supersaturation could potentially bridge mass balance differences between in situ measurements and global N₂O models. Supersaturation of nitrous oxide may occur in lagoons near concentrated animal feeding operations.
اظهر المزيد [+] اقل [-]Assessment of present and future risk to Italian forests and human health: Modelling and mapping النص الكامل
2009
A review of ozone pollution in Italy shows levels largely above the thresholds established by EU regulation for vegetation and human health protection. The Italian air quality monitoring network appears quantitatively inadequate to cover all the territorial surface, because of scarcity and unequal distribution of monitoring sites. By applying the integrated assessment model RAINS-Italy to the year 2000, the whole of Italy exceeds the AOT40 critical level for forest, while Northern and central areas show strong potential of O3 impact on human health with 11% of territory >10 O3-induced premature deaths. Two scenarios for the year 2020, the Current Legislation and the Maximum Technical Feasible Reduction, show a reduction of AOT40Forest by 29% and 44%, SOMO35 by 31% and 47%, and O3-induced premature deaths by 32% and 48%, compared to 2000. RAINS-Italy can be used to improve the map quality and cover areas not reached by the national monitoring network. AOT40 and SOMO35 are and will be high enough to affect forest and human health all over Italy.
اظهر المزيد [+] اقل [-]Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation النص الكامل
2009
This paper presents a review on the implications of climate change on the monitoring, modelling and regulation of persistent organic pollutants (POPs). Current research gaps are also identified and discussed. Long-term data sets are essential to identify relationships between climate fluctuations and changes in chemical species distribution. Reconstructing the influence of climatic changes on POPs environmental behaviour is very challenging in some local studies, and some insights can be obtained by the few available dated sediment cores or by studying POPs response to inter-annual climate fluctuations. Knowledge gaps and future projections can be studied by developing and applying various modelling tools, identifying compounds susceptibility to climate change, local and global effects, orienting international policies. Long-term monitoring strategies and modelling exercises taking into account climate change should be considered when devising new regulatory plans in chemicals management. Climate change implications on POPs are addressed here with special attention to monitoring, modelling and regulation issues.
اظهر المزيد [+] اقل [-]Agricultural opportunities to mitigate greenhouse gas emissions النص الكامل
2007
Johnson, J.M.F. | Franzluebbers, A.J. | Weyers, S.L. | Reicosky, D.C.
Agriculture is a source for three primary greenhouse gases (GHGs): CO2, CH4, and N2O. It can also be a sink for CO2 through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH4 consumption. Managing N to match crop needs can reduce N2O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH4 and N2O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint. Management options can be used to reduce agriculture's environmental impacts.
اظهر المزيد [+] اقل [-]Global climate change : Modelling the potential responses of agro-ecosystems with special reference to crop protection النص الكامل
1994
Goudriaan, J. | Zadoks, J.C.