خيارات البحث
النتائج 1 - 10 من 374
The Impact of RDF Valorization on the Leachate Quality and on Emissions from Cement Kiln (Case Study of a Region in Morocco) النص الكامل
2021
Ouigmane, Abdellah | Boudouch, Otmane | Hasib, Aziz | Ouhsine, Omar | Abba, El Hassan | Isaifan, Rima J. | Berkani, Mohamed
Energy recovery is a sustainable method of municipal solid waste (MSW) management. The co-incineration of refuse derived fuel (RDF) has shown several economic and environmental advantages. The objective of this research is to assess the impact of RDF recovery on leachate quality using leachate tests and calculation of greenhouse gases (GHG) reduction in the kilns of a cement plant. The qualitative results of the eluate show that there is an impact on leachate quality depending on the type of waste. The values of the chemical oxygen demand (COD), biological oxygen demand (BOD5), electrical conductivity and pH of the leachate from the raw waste after 120 hours of leaching are 29.33 gO2/kg DM, 14.00 g O2/kg DM, 4.27 ms/cm and 7.57. On the other hand, the values of the same quality parameters of the eluate generated by the waste without RDF are 19.33 g O2/kg DM, 20.67 g O2/kg DM, 2.77 ms/cm and 7.13; respectively. The calculation of GHG reduction shows that the substitution of 83,000 tonnes per year of petroleum coke by 15% of RDF (25,493 tonnes per year) can reduces 28,970 tCO2 eq.
اظهر المزيد [+] اقل [-]Application of a Decision-Making Model to Reduce CO2 Emissions in Iran (Case Study: CHP-CCS technology and renewable energy) النص الكامل
2020
Alinejad, H. R. | Behbahaninia, A. | Mackialeagha, M.
Iran is one of the largest producers of CO2 in the world. Therefore, in order to lessen its greenhouse gas production, thus complying with the Intended Nationally Determined Contributions (INDCs), it should cut its CO2 emissions by about 4% by 2030, compared to 2010. Hence this paper aims at finding an early solution to this problem. Because the country's electricity sector is responsible for the highest annual CO2 emissions, the paper focuses on two technologies that can effectively reduce CO2 emissions from the electricity sector, namely renewable energy and Combined Heat And Power Plants (CHP) with CO2 capture and storage (CCS). Further it assesses adoption of these technologies and their impact on Iran's annual CO2 emission by 2030, considering two main scenarios: the optimistic scenario (OS) which assumes that the policies of the Sixth Development Plan (SDP) will be fully realized as well as the fair scenario (FS) which believes that SDP policies will be followed to some extent by the end of the program. To this end, twenty six micro-factors, affecting CO2 emissions, have been identified and classified into five different groups. The detected micro factors are then introduced to a Gradient Boosting Decision Tree (GBDT) Algorithm to identify the most important specific microscopic factors in Iran. The final detected micro-factors have finally been included in a Gaussian regression model to predict CO2 emissions in Iran by 2030. The findings suggest that if Iran intends to comply with the INDCs, CHP-CCS technology is a solution that has an early return, compared to renewable technologies.
اظهر المزيد [+] اقل [-]Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay النص الكامل
2022
Zhang, Lei | He, Kai | Wang, Tong | Liu, Cheng | An, Yanfei | Zhong, Jicheng
Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH₄) and carbon dioxide (CO₂), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH₄ concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH₄ was 2–3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH₄. However, unlike CH₄, CO₂ did not change substantially, and river mouths acted as hotspots for CO₂ in most situations. The highest CO₂ concentration appeared in winter and was saturated, whereas at other times, CO₂ was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO₂ in the water and increased dissolved oxygen and pH. The increase in CH₄ in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO₂ from atmosphere and increasingly release CH₄, therefore, the contribution of the bay to the lake's CH₄ emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.
اظهر المزيد [+] اقل [-]Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being النص الكامل
2022
Sharma, Pooja | Dutta, Deblina | Udayan, Aswathy | Nadda, Ashok Kumar | Lam, Su Shiung | Kumar, Sunil
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
اظهر المزيد [+] اقل [-]Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition النص الكامل
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
اظهر المزيد [+] اقل [-]Long-term exposure to nano-TiO2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N2O emission النص الكامل
2022
Ye, Jinyu | Gao, Huan | Wu, Junkang | Yang, Guangping | Duan, Lijie | Yu, Ran
The extensive use of nano-TiO₂ has caused concerns regarding their potential environmental risks. However, the stress responses and self-recovery potential of nitrogen removal and greenhouse gas N₂O emissions after long-term nano-TiO₂ exposure have seldom been addressed yet. This study explored the long-term effects of nano-TiO₂ on biological nitrogen transformations in a sequencing batch reactor at four levels (1, 10, 25, and 50 mg/L), and the reactor's self-recovery potential was assessed. The results showed that nano-TiO₂ exhibited a dose-dependent inhibitory effect on the removal efficiencies of ammonia nitrogen and total nitrogen, whereas N₂O emissions unexpectedly increased. The promoted N₂O emissions were probably due to the inhibition of denitrification processes, including the reduction of the denitrifying-related N₂O reductase activity and the abundance of the denitrifying bacteria Flavobacterium. The inhibition of carbon source metabolism, the inefficient electron transfer efficiency, and the electronic competition between the denitrifying enzymes would be in charge of the deterioration of denitrification performance. After the withdrawal of nano-TiO₂ from the influent, the nitrogen transformation efficiencies and the N₂O emissions of activated sludge recovered entirely within 30 days, possibly attributed to the insensitive bacteria survival and the microbial community diversity. Overall, this study will promote the current understanding of the stress responses and the self-recovery potential of BNR systems to nanoparticle exposure.
اظهر المزيد [+] اقل [-]Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale النص الكامل
2022
Fang, Zhen | Zhou, Ling | Liu, Ya | Xiong, Jinpeng | Su, Ya | Lan, Zefeng | Han, Lujia | Huang, Guangqun
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
اظهر المزيد [+] اقل [-]Dynamics of soil N2O emissions and functional gene abundance in response to biochar application in the presence of earthworms النص الكامل
2021
Wu, Yupeng | Liu, Jiao | Shaaban, Muhammad | Hu, Ronggui
Nitrous oxide (N₂O) is a devastating greenhouse gas and acts as an ozone-depleting agent. Earthworms are a potential source of soil N₂O emissions. Application of biochar can mitigate earthworm-induced N₂O emissions. However, the underlying interactive mechanism between earthworms and biochar in soil N₂O emissions is still unclear. A 35-day laboratory experiment was conducted to examine the soil N₂O emission dynamics for four different treatments, earthworm presence with biochar application (EC), earthworm presence without biochar application (E), earthworm absence with biochar application (C) and earthworm absence without biochar application, and the control. Results indicated a negative impact of biochar on earthworm activity, displaying a significantly (p ≤ 0.05) lower survival rate and biomass of earthworms in treatment EC than E. Compared with the control, earthworm presence significantly (p ≤ 0.05) increased cumulative N₂O emissions, while application of biochar in the presence of earthworms significantly (p ≤ 0.05) decreased cumulative N₂O emissions (485 and 690 μg kg⁻¹ for treatments EC and E, respectively). Treatments E and EC significantly (p ≤ 0.05) increased soil microbial biomass carbon (MBC), ammonium (NH₄⁺-N), nitrate (NO₃⁻N), and dissolved organic carbon (DOC) content and soil pH as compared with the control. The gene copy number of 16 S rRNA, AOA, AOB, nirS, and nosZ increased for all treatments when compared with the control; however, a significant (p ≤ 0.05) difference among the studied genes was only observed for the nosZ gene (2.05 and 2.56 × 10⁶ gene copies g⁻¹ soil for treatments E and EC, respectively). Earthworm-induced soil N₂O emissions were significantly (p ≤ 0.05) reduced by biochar addition. The possible underlying mechanisms may include: (1) short-term negative impacts on earthworm activity; (2) a change of functional gene abundance in earthworm casts; and (3) an increase in soil pH due to addition of biochar.
اظهر المزيد [+] اقل [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system النص الكامل
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
اظهر المزيد [+] اقل [-]Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil النص الكامل
2021
Yu, Hong | Zhang, Zheng | Zhang, Ying | Song, Qidao | Fan, Ping | Xi, Beidou | Tan, Wenbing
Plastic mulching and straw incorporation are common agricultural practices in China. Plastic mulching is suspected to be a significant source of microplastics in terrestrial environments. Straw incorporation has many effects on the storage of soil organic carbon (SOC) and greenhouse gas emissions, but these effects have not been studied in the presence of microplastic pollution. In this study, 365-day soil incubation experiments were conducted to assess the effects of maize straw and polyethylene microplastics on SOC fractions and carbon dioxide (CO₂) and nitrous oxide (N₂O) emissions in two different soils (fluvo-aquic and latosol). Against the background of straw incorporation, microplastics reduced the mineralization and decomposition of SOC, resulting in a microbially available SOC content decrease by 18.9%. In addition, microplastics were carbon-rich, but relatively stable and difficult to be used by microorganisms, thus increasing the mineral-associated SOC content by 52.5%. This indicated that microplastics had adverse effects on microbially available SOC and positive effects on mineral-associated SOC. Microplastics also decreased coarse particulate SOC (>250 μm), and increased non-aggregated silt and clay aggregated SOC (<53 μm). Furthermore, microplastics changed microbial community compositions, thereby reducing the CO₂ and N₂O emissions of straw incorporation by 26.5%–33.9% and 35.4%–39.7%, respectively. These results showed that microplastics partially offset the increase of CO₂ and N₂O emissions induced by straw incorporation. Additionally, the inhibitory effect of microplastics on CO₂ emissions in fluvo-aquic soil was lower than that in latosol soil, whereas the inhibitory effect on N₂O emissions had the opposite trend.
اظهر المزيد [+] اقل [-]