خيارات البحث
النتائج 1 - 10 من 17
Risk Assessment and Effect of Different Factors on Nitrate in Groundwater Resources of Jiroft County
2018
Najaf Tarqi, M. | Askari Dolatabad, Y. | Vahidi, H.
Nitrate is a major contributor to water contamination, which can affect humans' and animals' health. Due to increased sewage production, growth of agricultural activities, and development of urbanization, recent years have seen an increase of Nitrate in water resources. Drinking water resources in both rural and urban areas of Jiroft City are supplied by water wells, scattered throughout the region. Thus the present research analyses the Nitrate pollution of 31 drinking water wells in summer and winter of 2016, in the urban area of Jiroft City and by means of GIS as well as statistical analysis, presents the results as zoning and survey maps. It also studies and evaluates the effect of rainfall and soil type on the amount of Nitrate. Results from statistical analyses show that the amount of water pollution to Nitrate is independent from the type of land use as well as the soil type. Furthermore, statistical results show that the amount of Nitrate in the wells under test is affected by precipitation, being higher in the winter. Therefore, considering the agricultural density in this area and the untapped use of nitrogen fertilizers, it is necessary to take into account the use of chemical fertilizers for proper management, scientific and practical control, and maintenance of the wells' health safety.
اظهر المزيد [+] اقل [-]An ex ante life cycle assessment of wheat with high biological nitrification inhibition capacity
2022
Leon, Ai | Guntur Venkata Subbarao | Kishii, Masahiro | Naruo Matsumoto | Kruseman, Gideon K.
It is essential to increase food production to meet the projected population increase while reducing environmental loads. Biological nitrification inhibition (BNI)-enabled wheat genetic stocks are under development through chromosome engineering by transferring chromosomal regions carrying the BNI trait from a wild relative (Leymus racemosus (Lam.) Tzvelev) into elite wheat varieties; field evaluation of these newly developed BNI-wheat varieties has started. Ten years from now, BNI-enabled elite wheat varieties are expected to be deployed in wheat production systems. This study aims to evaluate the impacts of introducing these novel genetic solutions on life cycle greenhouse gas (LC-GHG) emissions, nitrogen (N) fertilizer application rates and N-use efficiency (NUE). Scenarios were developed based on evidence of nitrification inhibition and nitrous oxide (N2O) emission reduction by BNI crops and by synthetic nitrification inhibitors (SNIs), as both BNI-wheat and SNIs slow the nitrification process. Scenarios including BNI-wheat will inhibit nitrification by 30% by 2030 and 40% by 2050. It was assumed that N fertilizer application rates can potentially be reduced, as N losses through N2O emissions, leaching and runoff are expected to be lower. The results show that the impacts from BNI-wheat with 40% nitrification inhibition by 2050 are assessed to be positive: a 15.0% reduction in N fertilization, a 15.9% reduction in LC-GHG emissions, and a 16.7% improvement in NUE at the farm level. An increase in ammonia volatilization had little influence on the reduction in LC-GHG emissions. The GHG emissions associated with N fertilizer production and soil N2O emissions can be reduced between 7.3 and 9.5% across the wheat-harvested area worldwide by BNI-wheat with 30% and 40% nitrification inhibition, respectively. However, the present study recommends further technological developments (e.g. further developments in BNI-wheat and the development of more powerful SNIs) to reduce environmental impacts while improving wheat production to meet the increasing worldwide demand.
اظهر المزيد [+] اقل [-]Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil
2021
Borthakur, Annesh | Cranmer, Brian K. | Dooley, Gregory P. | Blotevogel, Jens | Mahendra, Shaily | Mohanty, Sanjay K.
Groundwater flow through aquifer soils or packed bed systems can fluctuate for various reasons, which could affect the concentration of natural colloids and per- and polyfluoroalkyl substances (PFAS) in the pore water. In such cases, PFAS concentration could either decrease due to matrix diffusion of PFAS or increase by the detachment of colloids carrying PFAS. Yet, the effect of flow fluctuation on PFAS transport or release in porous media has not been examined. To examine the relative importance of either process, we interrupted the flow during an injection of groundwater spiked with perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), and bromide as conservative tracer through clay-rich soil, so that diffusive transport would be prominent during flow interruption. After flow interruption, the PFAS concentration did not decrease indicating an insignificant contribution of matrix diffusion. The concentration increased, potentially due to enhanced release of colloid-associated PFAS. Analysis of samples before and after flow interruption by particle size analysis and SEM confirmed an increase in soil colloid concentration after the flow interruption. XRD analysis of soil and the colloids proved that PFAS were associated with specific sites of the colloids. Due to a higher affinity of PFOA to soil colloids, the total PFOA concentration in the effluent samples increased more than PFBA after the flow interruption process. The results indicate that colloids may have a disproportionally higher role in the transport of PFAS in conditions that release colloids from porous media. Thus, fluctuations in groundwater flow can increase this colloid facilitated mobility of PFAS.
اظهر المزيد [+] اقل [-]Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health: A case study in Northeast China
2019
Zhai, Yuanzheng | Zheng, Fuxin | Zhao, Xiaobing | Xia, Xuelian | Teng, Yanguo
Concentrations of common pollutants in groundwater continue to increase, and emerging pollutants are also increasingly found worldwide, thereby increasingly impacting human activities. In this new situation, it is necessary, albeit more difficult, to once again recognize the hydrochemical genesis of groundwater and to subsequently screen the typical pollutants. Taking the groundwater of the Songnen Plain of Northeast China as an example, the hydrochemical genesis was identified using space interpolation, characteristic element ratio and factor analysis methods based on 368 groundwater samples. Subsequently, the typical pollutants with potential impacts on the health of the local residents were screened by the index system method newly established. All the measured hydrochemical compositions show an obvious spatial variation, with a uniform hydrochemical type of HCO3–Ca in the whole area. Both the major compositions (K, Na, Ca, Mg, HCO3, Cl and SO4) and trace compositions (Fe, Mn, Cu, Zn, Pb, As, F, I and Se) are mainly protogenetic in an environment impacted by the lixiviation of groundwater in the migration process in the strata, although these compositions have been impacted by human activities to varying degrees. The mass concentration of NO3–N has exceeded most of the major compositions except for HCO3 and Ca, which means the nitrogen pollution problem is already very serious; and this problem is mainly caused by the utilization of fertilizers and the discharge of industrial wastewater and domestic sewage. Human activities have obviously disrupted the natural dynamic balance of these chemicals between the environment and the groundwater, thereby intensifying the release of F, Fe and Mn from the environment. TDS, total hardness, tri-nitrogen, F, Fe, Mn, Pb and As in some parts are found to exceed the standards of groundwater quality to varying degrees. As, Pb, Fe, NO3–N, NO2–N, Mn, F and NH4–N are finally screened as the typical pollutants.
اظهر المزيد [+] اقل [-]Spatio-temporal variations of shallow and deep well groundwater nitrate concentrations along the Indus River floodplain aquifer in Pakistan
2019
Khan, Shahrukh Nawaz | Yasmeen, Tahira | Riaz, Muhammad | Arif, Muhammad Saleem | Rizwan, Muhammad | Ali, Shafaqat | Tariq, Azeem | Jessen, Søren
Excessive use of nitrogenous fertilizers and their improper management in agriculture causes nitrate contamination of surface and groundwater resources. This study was conducted along the seasonally flooded alluvial agricultural area of Indus River Basin to determine the spatial and temporal dynamics of nitrate concentrations in the groundwater along the river. Total of 112 samples were collected from shallow (30–40 ft) and deep groundwater (120–150 ft) wells at seven sites, 25 km apart from each other and covered an area of 170 km along the river, during four sampling campaigns between October 2016 to May 2017 i.e. in start, mid and end of dry season. The study period covered the whole agricultural cycle including the wet summer season with no agricultural activities under flooding and the sampling sites were always less than 2 km from the river bank. Nitrate concentrations of shallow wells were 15–54 and 20–45 mg L⁻¹ during the start and middle of dry season, respectively. However, at the end of the dry season, the highest nitrate concentrations of 35–75 mg L⁻¹ were recorded and 70% of these samples contained nitrate concentrations above the permissible limit 50 mg L⁻¹. Similar seasonal patterns of nitrate concentrations were observed in deep wells, however, δ¹⁸O data suggested lower recharge in deep well than shallow wells. The results illustrated that high nitrate concentrations in shallow wells were associated with high δ¹⁸O values indicating that the quantity of evaporated water infiltrated from the floodplain, possibly from distribution channels, along with the nitrate polluting shallow wells more than the deep wells. At the end of the dry season, nitrate concentrations exceeded the permissible limits in both shallow and deep wells, which possibly happened due to the horizontal movement of groundwater along with the nitrate mixing during vertical seepage of river water to the aquifers.
اظهر المزيد [+] اقل [-]HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue
2019
Vijgen, John | de Borst, Bram | Weber, Roland | Stobiecki, Tomasz | Forter, Martin
During the last 70 years 1, 2, 3, 4, 5, 6-Hexachlorocyclohexane (HCH) has been one of the most extensively used pesticides. Only the gamma-isomer has insecticidal properties. For the marketing of gamma-HCH (lindane) the other 85% HCH isomers which are formed as by-products during HCH production had to be separated and became finally hazardous waste. For each tonne of lindane 8–12 tonnes of waste HCH isomers were produced and production of the approximately 600,000 t of lindane has therefore generated 4.8 to 7.2 million tonnes of HCH/POPs waste. These waste isomers were mostly buried in uncontrolled dumps at many sites around the world. The stockpiles and the large contaminated sites can be categorized as “mega-sites”. Countries with HCH legacy problems include Albania, Argentina, Austria, Azerbaijan, Brazil, China, Croatia, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Russia, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, Ukraine and the USA.As lindane and alpha- and beta-HCH have been listed as POPs in the Stockholm Convention since August 2010, the problem of stockpiles of HCH waste is now documented and globally acknowledged.This article describes briefly the legacy of HCH and lindane that has been created. Three of the mega-sites are being discussed and demonstrate the increase in pollution footprint over time. Recent developments in the EU (including the Sabinanigo project in Aragon/Spain) and on a global level are presented. A short overview is given on lack of activities and on actions of countries within their obligations as Parties of the Stockholm Convention. Furthermore, current country activities supported by the Global Environment Facility (GEF), the “financing mechanism” of the convention, are listed. Finally, conclusions and recommendations are formulated that will contribute to the solution of this problem over the next 25 years.
اظهر المزيد [+] اقل [-]Bacterial-derived nutrient and carbon source-sink behaviors in a sandy beach subterranean estuary
2020
Chen, Xiaogang | Ye, Qi | Sanders, Christian J. | Du, Jinzhou | Zhang, Jing
Microbial communities in subterranean estuaries play important roles in the biogeochemical cycle. However, the microorganisms associated with biogeochemical behaviors in subterranean estuaries have received little attention. Here, the bacterial communities were compared between the fresh and saline groundwater in a subterranean estuary. Correlation analysis between bacterial groups and salinity indicated that different species represented different groundwater types. The key bacterial groups found along the subterranean estuaries have been shown to influence organic pollutant degradation and nitrate utilization. These species may be potential candidates for the in situ bioremediation of subterranean estuaries that are contaminated with pollutants. The utilization of nitrate and organic pollutants by bacteria in subterranean estuaries serves as a nitrate sink and inorganic carbon source. Our results show the role of bacteria in remediating pollutants through submarine groundwater discharge (SGD) to the coastal ocean, and specific species may be helpful in selecting reasonable groundwater end-members and reducing SGD uncertainties.
اظهر المزيد [+] اقل [-]Nitrogen monitoring in groundwater in the sandy regions of the Netherlands
1998
Fraters, D. | Boumans, L.J.M. | Drecht, G. van | Haan, T. de | Hoop, W.D. de (National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands))
Environmental hazards of nitrogen loading in wetland rice fields
1998
Ghosh, B.C. | Ravi Bhat (Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India))
Nitrogen, the Confer-N-s
1998
Manning, W.J. | Dempster, J.P. (eds.) (Department of Microbiology, University of Massachusetts, 203 Morrill Science Center IVN, Box 35720, Amherst, Massachusetts 01003-5720 (USA))