خيارات البحث
النتائج 1 - 10 من 481
Seasonal variation of dissolved bioaccessibility for potentially toxic elements in size-resolved PM: Impacts of bioaccessibility on inhalable risk and uncertainty
2022
Jia, Bin | Tian, Yingze | Dai, Yuqing | Chen, Rui | Zhao, Peng | Chu, Jingjing | Feng, Xin | Feng, Yinchang
The health effects of potentially toxic elements (PTEs) in airborne particulate matter (PM) are strongly dependent on their size distribution and dissolution. This study examined PTEs within nine distinct sizes of PM in a Chinese megacity, with a focus on their deposited and dissolved bioaccessibility in the human pulmonary region. A Multiple Path Particle Dosimetry (MPPD) model was used to estimate the deposited bioaccessibility, and an in-vitro experiment with simulated lung fluid was conducted for dissolved bioaccessibility. During the non-heating season, the dissolved bioaccessible fraction (DBF) of As, Cd, Co, Cr, Mn, Pb and V were greater in fine PM (aerodynamics less than 2.1 μm) than in coarse PM (aerodynamics between 2.1 and 10 μm), and vice versa for Ni. With the increased demand of heating, the DBF of Pb and As decreased in fine particle sizes, probably due to the presence of oxide/silicate compounds from coal combustion. Inhalation health risks based on the bioaccessible concentrations of PTEs displayed the peaks in <0.43 μm and 2.1–3.3 μm particulate sizes. The non-cancer risk was at an acceptable level (95th percentiles of hazard index (HI) was 0.49), but the cancer risk exceeded the threshold value (95th percentiles of total incremental lifetime cancer risk (TCR) was 8.91 × 10⁻⁵). Based on the results of uncertainty analysis, except for the exposure frequency, the total concentrations and DBF of As and Cr in <0.43 μm particle size segment have a greater influence on the uncertainty of probabilistic risk.
اظهر المزيد [+] اقل [-]The relationship between the intensified heat waves and deteriorated summertime ozone pollution in the Beijing–Tianjin–Hebei region, China, during 2013–2017
2022
Wang, Ruonan | Bei, Naifang | Hu, Bo | Wu, Jiarui | Liu, Suixin | Li, Xia | Jiang, Qian | Tie, Xuexi | Li, Guohui
Summertime ozone (O₃) pollution has frequently occurred in the Beijing–Tianjin–Hebei (BTH) region, China, since 2013, resulting in detrimental impacts on human health and ecosystems. The contribution of weather shifts to O₃ concentration variability owing to climate change remains elusive. By combining regional air chemistry model simulations with near-surface observations, we found that anthropogenic emission changes contributed to approximately 23% of the increase in maximum daily 8-h average O₃ concentrations in the BTH region in June–July–August (JJA) 2017 (compared with that in 2013). With respect to the weather shift influence, the frequencies, durations, and magnitudes of O₃ exceedance were consistent with those of the heat wave events in the BTH region during JJA in 2013–2017. Intensified heat waves are a significant driver for worsening O₃ pollution. In particular, the prolonged duration of heat waves creates consecutive adverse weather conditions that cause O₃ accumulation and severe O₃ pollution. Our results suggest that the variability in extreme summer heat is closely related to the occurrence of high O₃ concentrations, which is a significant driver of deteriorating O₃ pollution.
اظهر المزيد [+] اقل [-]Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses
2022
Silambarasan, Sivagnanam | Logeswari, Peter | Vangnai, Alisa S. | Kamaraj, Balu | Cornejo, Pablo
In this study, two proficient Cadmium (Cd) resistant and plant growth-promoting actinobacterial strains were isolated from metal-polluted soils and identified as Streptomyces sp. strain RA04 and Nocardiopsis sp. strain RA07. Multiple abiotic stress tolerances were found in these two actinobacterial strains, including Cd stress (CdS), drought stress (DS) and high-temperature stress (HTS). Both actinobacterial strains exhibited multifarious plant growth-promoting (PGP) traits such as phosphate solubilization, and production of indole-3-acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase under CdS, DS and HTS conditions. The inoculation of strains RA04 and RA07 significantly increased Sorghum bicolor growth and photosynthetic pigments under CdS, DS, HTS, CdS + DS and CdS + HTS conditions as compared to their respective uninoculated plants. The actinobacterial inoculants reduced malondialdehyde concentration and enhanced antioxidant enzymes in plants cultivated under various abiotic stress conditions, indicating that actinobacterial inoculants reduced oxidative damage. Furthermore, strains RA04 and RA07 enhanced the accumulation of Cd in plant tissues and the translocation of Cd from root to shoot under CdS, CdS + DS and CdS + HTS treatments as compared to their respective uninoculated plants. These findings suggest that RA04 and RA07 strains could be effective bio-inoculants to accelerate phytoremediation of Cd polluted soil even in DS and HTS conditions.
اظهر المزيد [+] اقل [-]Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment
2022
Cheng, Tangying | Li, Jinjin | Ma, Xiuwei | Zhou, Lei | Wu, Hao | Yang, Linjun
The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.
اظهر المزيد [+] اقل [-]Gas-PM2.5 partitioning, health risks, and sources of atmospheric PAHs in a northern China city: Impact of domestic heating
2022
Sun, Yuewei | Chen, Jing | Qin, Weihua | Yu, Qing | Xin, Ke | Ai, Jing | Huang, Huiying | Liu, Xingang
The diurnal variation, gas-particle partitioning, health risks, and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in a northern basin city of China in winter, 2020. The mean concentrations of particulate and gaseous PAHs were 87.90 ng m⁻³ and 69.65 ng m⁻³, respectively, and their concentrations were considerably enhanced during the domestic heating period. The relationship between the gas-particle partitioning coefficient of PAHs (KP) and subcooled liquid vapor pressure of PAHs (PL⁰) indicated organic absorption as the mechanism for this partitioning. However, the dual sorption model confirmed adsorption onto elemental carbon (EC). The health risks indicated by several equivalent parameters showed an important health effect of PAHs, especially of particulate PAHs bound onto PM₂.₅ during the heating period. Environmentally persistent free radicals (EPFRs) were also studied as an auxiliary parameter to evaluate the health impact of PAHs. According to the diagnostic ratios of PAHs and PMF model results, petroleum volatilization and coal combustion were the dominant sources of particulate PAHs during the non-heating and heating periods, respectively. The source apportionment results can help efficiently control PAHs and their health risks.
اظهر المزيد [+] اقل [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
اظهر المزيد [+] اقل [-]Will open waste burning become India's largest air pollution source?
2022
Sharma, Gaurav | Annadate, Saurabh | Sinha, Baerbel
India struggles with frequent exceedances of the ambient air quality standard for particulate matter and benzene. In the past two decades, India has made considerable progress in tackling indoor air pollution, by phasing out kerosene lamps, and pushing biofuel using households towards Liquefied Petroleum Gas (LPG) usage. In this study, we use updated emission inventories and trends in residential fuel consumption, to explore changes in the contribution of different sectors towards India's largest air pollution problem. We find that residential fuel usage is still the largest air pollution source, and that the <10% households using cow dung as cooking fuel contribute ∼50% of the residential PM₂.₅ emissions. However, if current trends persist, residential biofuel usage in India is likely to be phased out by 2035. India's renewable energy policies are likely to reduce emissions in the heat and electricity sector, and manufacturing industries, in the mid-term. PM₂.₅ emissions from open waste burning, on the other hand, hardly changed in the decade from 2010 to 2020. We conclude that without strong policies to promote recycling and upcycling of non-biodegradable waste, and the conversion of biodegradable waste to biogas, open waste burning is likely to become India's largest source of air pollution by 2035. While our study is limited to India, our findings are of relevance for other countries in the global South suffering from similar waste management challenges.
اظهر المزيد [+] اقل [-]Conversion and transformation of N species during pyrolysis of wood-based panels: A review
2021
Xu, Deliang | Yang, Liu | Zhao, Ming | Zhang, Jinrui | Syed Shatir A. Syed-Hassan, | Sun, Hongqi | Hu, Xun | Zhang, Hong | Zhang, Shu
Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOₓ emission.
اظهر المزيد [+] اقل [-]Seasonal variations in the mass characteristics and optical properties of carbonaceous constituents of PM2.5 in six cities of North China
2021
Luo, Lining | Tian, Hezhong | Liu, Huanjia | Bai, Xiaoxuan | Liu, Wei | Liu, Shuhan | Wu, Bobo | Lin, Shumin | Zhao, Shuang | Hao, Yan | Sun, Yujiao | Hao, Jiming | Zhang, Kai
Carbonaceous constituents have various adverse impacts on human health, visibility, and climate change. Although comprehensive studies on the characteristics of carbonaceous constituents have been conducted recently, systematic studies covering both the mass characteristics and light-absorption properties of carbonaceous constituents on a regional scale in China are quite limited. In this study, current seasonal measurements of organic carbon (OC) and elemental carbon (EC) in PM₂.₅ were investigated during autumn and winter (1–30 October 2017 and December 18, 2017 to January 17, 2018) in six selected cities located at the eastern foot of the Taihang Mountains: Beijing, Baoding, Shijiazhuang, Handan, Xinxiang, and Zhengzhou. Seasonal variations were similar when Beijing was excluded. The lowest concentrations of OC (18.33 ± 9.39 μg/m³) and EC (7.66 ± 5.64 μg/m³) were observed in Xinxiang (autumn) and Beijing (winter), respectively, while the highest concentrations of OC (38.43 ± 62.10 μg/m³) and EC (12.24 ± 24.67 μg/m³) occurred in Baoding during winter mainly due to elevated fuel combustion for space heating. The results of the potential source contribution function (PSCF) analysis suggested that border zones between several provinces in North China should be highlighted in order to strengthen pollution control. Moreover, by separating the optical properties of brown carbon from those of black carbon, we were able to estimate the contributions of brown carbon to the PM₂.₅ total light-absorption coefficient. The results show that the brown carbon absorption coefficient (at 405 nm) in winter at six sites accounted for 21.2%, 33.3%, 34.7%, 39.1%, 48.6%, and 23.3% of the PM₂.₅ light absorption, which are values that are comparable to the contribution of black carbon in Xinxiang. These results provide a more comprehensive understanding of carbonaceous constituents on a regional scale.
اظهر المزيد [+] اقل [-]Effect of non-optimum ambient temperature on cognitive function of elderly women in Germany
2021
Zhao, Qi | Wigmann, Claudia | Areal, Ashtyn Tracey | Altug, Hicran | Schikowski, Tamara
Non-optimum ambient temperature has been associated with a variety of health outcomes in the elderly population. However, few studies have examined its adverse effects on neurocognitive function. In this study, we explored the temperature-cognition association in elderly women. We investigated 777 elderly women from the German SALIA cohort during the 2007–2010 follow-up. Cognitive function was evaluated using the CERAD-Plus test battery. Modelled data on daily weather conditions were assigned to the residential addresses. The temperature-cognition association over lag 0–10 days was estimated using multivariable regression with distributed lag non-linear model. The daily mean temperature ranged between −6.7 and 26.0 °C during the study period for the 777 participants. We observed an inverse U-shaped association in elderly women, with the optimum temperature (15.3 °C) located at the 68th percentile of the temperature range. The average z-score of global cognitive function declined by −0.31 (95%CI: 0.73, 0.11) for extreme cold (the 2.5th percentile of temperature range) and −0.92 (95%CI: 1.50, −0.33) for extreme heat (the 97.5th percentile of temperature range), in comparison to the optimum temperature. Episodic memory was more sensitive to heat exposure, while semantic memory and executive function were the two cognitive domains sensitive to cold exposure. Individuals living in an urban area and those with a low educational level were particularly sensitive to extreme heat. In summary, non-optimum temperature was inversely associated with cognitive function in elderly women, with the effect size for heat exposure particularly substantial. The strength of association varied by cognitive domains and individual characteristics.
اظهر المزيد [+] اقل [-]