خيارات البحث
النتائج 1 - 10 من 45
Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification
2019
Maulvault, Ana Luísa | Camacho, Carolina | Barbosa, Vera | Alves, Ricardo | Anacleto, Patrícia | Cunha, Sara C. | Fernandes, José O. | Pousão-Ferreira, Pedro | Paula, José Ricardo | Rosa, Rui | Diniz, Mario | Marques, António
Triclosan (TCS) is a synthetic microbial compound widely used in the formulation of various personal care products. Its frequent detection in marine ecosystems, along with its physical and chemical properties, suggest that TCS can be highly persistent, being easily bioaccumulated by biota and, therefore, eliciting various toxicological responses. Yet, TCS's mechanisms of bioaccumulation and toxicity still deserve further research, particularly focusing on the interactive effects with climate change-related stressors (e.g. warming and acidification), as both TCS chemical behaviour and marine species metabolism/physiology can be strongly influenced by the surrounding abiotic conditions. Hence, the aim of this study was to assess TCS bioaccumulation and ecotoxicological effects (i.e. animal fitness indexes, antioxidant activity, protein chaperoning and degradation, neurotoxicity and endocrine disruption) in three tissues (i.e. brain, liver and muscle) of juvenile Diplodus sargus exposed to the interactive effects of TCS dietary exposure (15.9 μg kg−1 dw), seawater warming (ΔTºC = +5 °C) and acidification (ΔpCO2 ∼ +1000 μatm, equivalent to ΔpH = −0.4 units). Muscle was the primary organ of TCS bioaccumulation, and climate change stressors, particularly warming, significantly reduced TCS bioaccumulation in all fish tissues. Furthermore, the negative ecotoxicological responses elicited by TCS were significantly altered by the co-exposure to acidification and/or warming, through either the enhancement (e.g. vitellogenin content) or counteraction/inhibition (e.g. heat shock proteins HSP70/HSC70 content) of molecular biomarker responses, with the combination of TCS plus acidification resulting in more severe alterations. Thus, the distinct patterns of TCS tissue bioaccumulation and ecotoxicological responses induced by the different scenarios emphasized the need to further understand the interactive effects between pollutants and abiotic conditions, as such knowledge enables a better estimation and mitigation of the toxicological impacts of climate change in marine ecosystems.
اظهر المزيد [+] اقل [-]Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris
2019
Prendergast-Miller, Miranda T. | Katsiamides, Andreas | Abbass, Mustafa | Sturzenbaum, Stephen R. | Thorpe, Karen L. | Hodson, Mark E.
Microplastic (MP) pollution is everywhere. In terrestrial environments, microfibres (MFs) generated from textile laundering are believed to form a significant component of MPs entering soils, mainly through sewage sludge and compost applications. The aim of this study was to assess the effect of MFs on a keystone soil organism. We exposed the earthworm Lumbricus terrestris to soil with polyester MFs incorporated at rates of 0, 0.1 and 1.0 %w/w MF for a period of 35 days (in the dark at 15 °C; n = 4 for each treatment). Dried plant litter was applied at the soil surface as a food source for the earthworms. We assessed earthworm vitality through mortality, weight change, depurate production and MF avoidance testing. In addition, we measured stress biomarker responses via the expression of metallothionein-2 (mt-2), heat shock protein (hsp70) and superoxide dismutase (sod-1). Our results showed that exposure and ingestion of MFs (as evidenced by subsequent retrieval of MFs within earthworm depurates) were not lethal to earthworms, nor did earthworms actively avoid MFs. However, earthworms in the MF1.0% treatment showed a 1.5-fold lower cast production, a 24.3-fold increase in expression of mt-2 (p < 0.001) and a 9.9-fold decline in hsp70 expression (p < 0.001). Further analysis of soil and MF samples indicated that metal content was not a contributor to the biomarker results. Given that burrowing and feeding behaviour, as well as molecular genetic biomarkers, were modulated in earthworms exposed to MFs, our study highlights potential implications for soil ecosystem processes due to MF contamination.
اظهر المزيد [+] اقل [-]Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism
2017
Martínez-Paz, Pedro | Morales, Monica | Sánchez-Argüello, Paloma | Morcillo, Gloria | Martínez-Guitarte, José Luis
The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
اظهر المزيد [+] اقل [-]Physiological and molecular responses of springtails exposed to phenanthrene and drought
2014
Holmstrup, Martin | Slotsbo, Stine | Schmidt, Stine N. | Mayer, Philipp | Damgaard, Christian | Sørensen, Jesper G.
Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive.
اظهر المزيد [+] اقل [-]Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphus minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts
2013
Frank, Sabrina N. | Godehardt, Saskia | Nachev, Milen | Trubiroha, Achim | Kloas, Werner | Sures, Bernd
It is a common method to analyse physiological mechanisms of organisms – commonly referred to as biomarkers – to indicate the presence of environmental pollutants. However, as biomarkers respond to a wide range of stressors we want to direct the attention on natural stressors, i.e. on parasites. After two years maintenance under controlled conditions, roach (Rutilus rutilus) revealed no influence on levels of metallothionein by the parasite Ligula intestinalis. The same was found for Gammarus fossarum infected with Polymorphus minutus. However, the heat shock protein (HSP70) response was affected in both host-parasite systems. While the infection of roach resulted in reduced levels of HSP70 compared to uninfected roach, the infection in G. fossarum led to higher levels of HSP70. We also analysed the effect of a 14 days Cd exposure (4 μg/L) on the uninfected and infected gammarids. The exposure resulted in induced levels for both, metallothionein and HSP70 whereas the combination of stressors, parasite and exposure, revealed a decrease for levels of HSP70 in comparison to the metal exposure only. Accordingly, parasites as natural parts of aquatic ecosystems have to be considered in ecotoxicological research.
اظهر المزيد [+] اقل [-]Household prallethrin-based insecticide toxicity on different C. elegans life stage: A possible sign of Huntington Disease
2022
Tamagno, Wagner Antonio | Alves, Carla | Pompermaier, Aline | Vanin, Ana Paula | Barcellos, Leonardo José Gil
Household insecticide is largely used for insect and ectoparasite control, in city centers as well as in the countryside. The pyrethroids are the most used class of insecticide, these compounds in low doses have low toxicity for mammalians, in comparison to other compounds, with insecticide effects. The contact of these compounds in sublethal doses begins in early life and many cases, in intrauterine life. Considerable diseases still with undefined etiology, such as neurodegenerative conditions, and Huntington's Disease (HD) is one of them. HD is related to overexpression of Polyglutamine (PolyQ40), its aggregation, and non-solubilization, which leads to neural, behavioral, and cognitive damage. In our study, we evaluate the effect of two sublethal doses of a prallethrin-based insecticide (P-BI), in three different Caenorhabditis elegans life stages transgenerational, neonatal, and lifespan. We evaluated the Body bends and pharyngeal pumping rate, and social feeding as behavioral biomarkers. As well as acetylcholinesterase activity (AChE), PolyQ40 aggregation, antioxidant enzymes, and heat shock protein (HSP) expression. We observe that the toxic effect of P-BI is more pronounced on transgenerational and lifespan exposure. Both sublethal doses of P-BI decreased the AChE activity and retard the HSP expression as well as increased the PolyQ40 aggregates indicating a clear biomarker for possible effect in the progression of the HD, by the environmental contamination.
اظهر المزيد [+] اقل [-]The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas
2021
Li, Zhuo | Ali Shah, Syed Waqas | Zhou, Qin | Yin, Xiujie | Teng, Xiaohua
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H₂O₂) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
اظهر المزيد [+] اقل [-]iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium
2018
Feng, Mi | Yin, Hua | Peng, Hui | Lu, Guining | Liu, Zehua | Dang, Zhi
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
اظهر المزيد [+] اقل [-]3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster
2022
Wang, Yahong | Jiang, Zhihao | Zhang, Lu | Zhang, Ziyan | Liao, Yanyan | Cai, Peng
With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m², 1 W/m² and 10 W/m². We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.
اظهر المزيد [+] اقل [-]Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster
2022
Dwivedi, Shiwangi | D'Souza, Leonard Clinton | Shetty, Nidhi Ganesh | Raghu, Shamprasad Varija | Sharma, Anurag
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
اظهر المزيد [+] اقل [-]