خيارات البحث
النتائج 1 - 10 من 91
Aquatic vascular plants – A forgotten piece of nature in microplastic research النص الكامل
2020
Kalčíková, Gabriela
Research on the interaction of microplastics and aquatic organisms has been mainly focused on the evaluation of various impacts on animals while aquatic vascular plants have been so far understudied. In this commentary, we summarized knowledge about interactions of microplastics with aquatic vascular plants and highlighted potential ecological implications. Based on recent research, microplastics have minimal impacts on plants. However, they are strongly attracted to plant tissues, adsorbed, and accumulated by plants. Several mechanisms drive microplastics adsorption and accumulation; the most possibly electrostatic forces, leaf morphology, and presence of periphyton belong among the most important ones. Adsorbed microplastics on plant tissues are easily ingested by herbivores. Plants can thus represent a viable pathway for microplastics to enter aquatic food webs. On the other hand, the strong interactions of microplastics with plants could be used for their phytostabilization and final removal from the environment. Aquatic vascular plants have thus an important role in the behavior and fate of microplastics in aquatic ecosystems, and therefore, they should also be included in the future microplastic research.
اظهر المزيد [+] اقل [-]Petroleum hydrocarbon (PHC) uptake in plants: A literature review النص الكامل
2019
Hunt, Lillian J. | Duca, Daiana | Dan, Tereza | Knopper, Loren D.
Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.
اظهر المزيد [+] اقل [-]Sublethal insecticide exposure of an herbivore alters the response of its predator النص الكامل
2019
Müller, Thorben | Gesing, Matthias Alexander | Segeler, Markus | Muller, Caroline
Sublethal insecticide exposure poses risks for many non-target organisms and is a challenge for successful implementation of integrated pest management (IPM) programs. Next to detrimental effects of short-term insecticide exposure on fitness-related traits of organisms, also properties such as chemical signaling traits can be altered, which mediate intra- and interspecific communication. We investigated the effects of different durations of larval sublethal exposure to the pyrethroid lambda-cyhalothrin on performance traits of larvae and adults of the herbivorous mustard leaf beetle, Phaedon cochleariae. Moreover, by applying a direct contact and olfactometer bioassays, we determined the reaction of a generalist predator, the ant Myrmica rubra, towards insecticide-exposed and unexposed herbivore larvae and their secretions. Already short-term sublethal insecticide exposure of a few days caused a prolonged larval development and a reduced adult body mass of males. These effects may result from an insecticide-induced reduction in energy reserves. Furthermore, ants responded more frequently to insecticide-exposed than to unexposed larvae of P. cochleariae and their secretions. This increased responsiveness of ants towards insecticide-exposed larvae may be due to an insecticide-induced change in synthesis of chrysomelidial and epichrysomelidial, the dominant compounds of the larval secretion, which act defensive against various generalist predators. In conclusion, the results highlight that short-term insecticide exposure can impair the fitness of an herbivorous species due to both direct toxic effects and an increased responsiveness of predators. Consequently, exposure of single non-target species can have consequences for ecological communities in both natural habitats and IPM programs.
اظهر المزيد [+] اقل [-]Ozone disrupts adsorption of Rhododendron tomentosum volatiles to neighbouring plant surfaces, but does not disturb herbivore repellency النص الكامل
2018
Mofikoya, Adedayo O. | Kivimäenpää, Minna | Blande, James D. | Holopainen, Jarmo K.
The perennial evergreen woody shrub, Rhododendron tomentosum, confers associational resistance against herbivory and oviposition on neighbouring plants through passive adsorption of some of its constitutively emitted volatile organic compounds (VOCs). The adsorption process is dependent on transport of VOCs in the air. In polluted atmospheres, the VOCs may be degraded and adsorption impeded. We studied the effect of elevated ozone regimes on the adsorption of R. tomentosum volatiles to white cabbage, Brassica oleracea, and the oviposition of the specialist herbivore Plutella xylostella on the exposed plants. We found evidence for adsorption and re-emission of R. tomentosum volatiles by B. oleracea plants. Ozone changed the blend of R. tomentosum volatiles and reduced the amount of R. tomentosum volatiles recovered from B. oleracea plants. However, plants exposed to R. tomentosum volatiles received fewer P. xylostella eggs than control plants exposed to filtered air irrespective of whether R. tomentosum volatiles mixed with ozone. Ozone disrupts a volatile mediated passive plant-to-plant interaction by degrading some compounds and reducing the quantity available for adsorption by neighbouring plants. The change, however, did not affect the deterrence of oviposition by P. xylostella, suggesting that aromatic companion plants of Brassica crops may confer pest-deterring properties even in ozone-polluted environments.
اظهر المزيد [+] اقل [-]Recycle food wastes into high quality fish feeds for safe and quality fish production النص الكامل
2016
Wong, Ming-Hung | Mo, Wing-Yin | Choi, Wai-Ming | Cheng, Zhang | Man, Yu-Bon
The amount of food waste generated from modern societies is increasing, which has imposed a tremendous pressure on its treatment and disposal. Food waste should be treated as a valuable resource rather than waste, and turning it into fish feeds would be a viable alternative. This paper attempts to review the feasibility of using food waste to formulate feed pellets to culture a few freshwater fish species, such as grass carp, grey mullet, and tilapia, under polyculture mode (growing different species in the same pond). These species occupy different ecological niches, with different feeding modes (i.e., herbivorous, filter feeding, etc.), and therefore all the nutrients derived from the food waste could be efficiently recycled within the ecosystem. The problems facing environmental pollution and fish contamination; the past and present situation of inland fish culture (focusing on South China); upgrade of food waste based feed pellets by adding enzymes, vitamin-mineral premix, probiotics (yeast), prebiotics, and Chinese medicinal herbs into feeds; and potential health risks of fish cultivated by food waste based pellets are discussed, citing some local examples. It can be concluded that appropriate portions of different types of food waste could satisfy basic nutritional requirements of lower trophic level fish species such as grass carp and tilapia. Upgrading the fish pellets by adding different supplements mentioned above could further elevated the quality of feeds, leading to higher growth rates, and enhanced immunity of fish. Health risk assessments based on the major environmental contaminants (mercury, PAHs and DDTs) in fish flesh showed that fish fed food waste based pellets are safer for consumption, when compared with those fed commercial feed pellets.
اظهر المزيد [+] اقل [-]Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web النص الكامل
2014
Xu, Jian | Guo, Chang-Sheng | Zhang, Yuan | Meng, Wei
In this study, the bioaccumulation of perfluorinated compounds from a food web in Taihu Lake in China was investigated. The organisms included egret bird species, carnivorous fish, omnivorous fish, herbivorous fish, zooplankton, phytoplankton, zoobenthos and white shrimp. Isotope analysis by δ13C and δ15N indicated that the carnivorous fish and egret were the top predators in the studied web, occupying trophic levels intermediate between 3.66 and 4.61, while plankton was at the lowest trophic level. Perfluorinated carboxylates (PFCAs) with 9–12 carbons were significantly biomagnified, with trophic magnification factors (TMFs) ranging from 2.1 to 3.7. The TMF of perfluorooctane sulfonate (PFOS) (2.9) was generally comparable to or lower than those of the PFCAs in the same food web. All hazard ratio (HR) values reported for PFOS and perfluorooctanoate (PFOA) were less than unity, suggesting that the detected levels would not cause any immediate health effects to the people in Taihu Lake region through the consumption of shrimps and fish.
اظهر المزيد [+] اقل [-]Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies النص الكامل
2010
Matyssek, R. | Karnosky, D.F. | Wieser, G. | Percy, K. | Oksanen, E. | Grams, T.E.E. | Kubiske, M. | Hanke, D. | Pretzsch, H.
Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.
اظهر المزيد [+] اقل [-]The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution النص الكامل
2008
Jones, M.E. | Paine, T.D. | Fenn, M.E.
To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.
اظهر المزيد [+] اقل [-]Indirect herbivore biomanipulation may halt regime shift from clear to turbid after macrophyte restoration النص الكامل
2022
Zhang, Chengxiang | Pei, Hongcui | Lu, Cai | Liu, Cunqi | Wang, Wei | Zhang, Xiaobo | Liu, Peizhong | Lei, Guangchun
Eutrophication transforms clear water into turbid water in shallow lakes. Current restoration techniques focus on re-establishing the clear-water state rather than on its maintenance. We investigated the response of submerged macrophytes to temporary grass carp (Ctenopharyngodon idella) and scraping snail (Bellamya aeruginosa) introductions. We also explored the impacts of herbivores on underwater light conditions to identify their long- and short-term potential to halt regime shift from clear to turbid after clear-water state reestablishment. Herbivores reduced both the biomass of submerged macrophytes and accumulated nutrients in the tissue of submerged macrophytes. This potentially avoided the pulse of endogenous nutrient release which would have exceeded the threshold required for the regime shift from clear to turbid. However, herbivores had a non-significant impact on submerged macrophyte-reduced light attenuation coefficient, which has a positive linear relationship with water chlorophyll a. Further, grass carp and snails enhanced the inhibition ratio of submerged macrophytes to phytoplankton by 3.96 and 2.13 times, respectively. Our study provides novel findings on the potential of herbivore introduction as an indirect biomanipulation tool for halting the regime shift of shallow lakes from clear to turbid after the restoration of submerged macrophytes.
اظهر المزيد [+] اقل [-]Artificial light at night promotes bottom-up changes in a woodland food chain النص الكامل
2022
Lockett, Martin T. | Rasmussen, Rebecca | Arndt, Stefan K. | Hopkins, Gareth R. | Jones, Therésa M.
Artificial light at night (ALAN) is a recognised disruptor of biological function and ecological communities. Despite increasing research effort, we know little regarding the effect of ALAN on woody plants, including trees, or its indirect effects on their colonising invertebrates. These effects have the potential to disrupt woodland food webs by decreasing the productivity of invertebrates and their secretions, including honeydew and lerps, with cascading effects on other fauna. Here, we cultivated juvenile river red gums (Eucalyptus camaldulensis) for 40 weeks under experimentally manipulated light (ALAN) or naturally dark (control) conditions. To assess direct impacts on tree growth, we took multiple measures of growth at four time periods, and also measured physiological function, biomass and investment in semi-mature trees. To assess experimentally the direct and indirect (tree-mediated) impacts of ALAN on invertebrates, from 19 weeks onwards, we matched and mismatched trees with their original ALAN environments. We colonised trees with a common herbivore of E. camaldulensis, the red gum lerp psyllid (Glycaspis nr. brimblecombei) and then measured the effects of current and historic tree lighting treatment on the psyllid life cycle. Our data revealed direct effects of ALAN on tree morphology: E. camaldulensis trees exposed to ALAN shifted biomass allocation away from roots and into leaves and increased specific leaf area. However, while the intensity of ALAN was sufficient to promote photosynthesis (net carbon gain) at night, this did not translate into variation in tree water status or photosystem adaptation to dim night-time light for ALAN-exposed trees. We found some evidence that ALAN had broad-scale community effects—psyllid nymphs colonising ALAN trees produced more lerps—but we found no other direct or indirect impacts of ALAN on the psyllid life cycle. Our results suggest that trees exposed to ALAN may share morphological responses with trees under dim daylight conditions. Further, ALAN may have significant ‘bottom-up’ effects on Eucalyptus woodland food webs through both trees and herbivores, which may impact higher trophic levels including woodland birds, mammals and invertebrates.
اظهر المزيد [+] اقل [-]