خيارات البحث
النتائج 1 - 10 من 59
Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus
2022
Deng, Yanchun | Yang, Sa | Zhao, Hongxia | Luo, Ji | Yang, Wenchao | Hou, Chunsheng
Antibiotics are omnipresent in the environment due to their widespread use, and they have wide-ranging negative impacts on organisms. Virus resistance differs substantially between domesticated Apis mellifera and wild Apis cerana, although both are commonly raised in China. Here, we investigated whether antibiotics can increase the sensitivity of honey bees to viral infection using the Israeli acute paralysis virus (IAPV) and tetracycline as representative virus and antibiotic. Although IAPV multiplied to lower levels in A. cerana than A. mellifera, resulting in decreased mortality (P < 0.01), there was no significant difference in immune responses to viral infection between the two species. Adult worker bees (A. cerana and A. mellifera) were treated with or without tetracycline to demonstrate the prominent role of gut microbiota against viral infection, and found Lactobacillus played a vital antiviral role in A. cerana. In A. cerana but not A. mellifera, tetracycline treatment reduced clearly bee survival and increased susceptibility to IAPV infection (P < 0.01). Our findings revealed that long-term antibiotic treatment in A. mellifera had altered the native gut microbiome and promoted the sensitivity to viral infection. We highlight the effects of antibiotics exposure on resistance to microbial and viral infection.
اظهر المزيد [+] اقل [-]Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees
2022
Scivicco, Marcello | Nolasco, Agata | Esposito, Luigi | Ariano, Andrea | Squillante, Jonathan | Esposito, Francesco | Cirillo Sirri, Teresa | Severino, Lorella
The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.
اظهر المزيد [+] اقل [-]Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera)
2021
Fisher, Adrian | DeGrandi-Hoffman, Gloria | Smith, Brian H. | Johnson, Meredith | Kaftanoglu, Osman | Cogley, Teddy | Fewell, Jennifer H. | Harrison, Jon F.
Honey bees (Apis mellifera) and other pollinator populations are declining worldwide, and the reasons remain controversial. Based on laboratory testing, fungicides have traditionally been considered bee-safe. However, there have been no experimental tests of the effects of fungicides on colony health under field conditions, and limited correlational data suggests there may be negative impacts on bees at levels experienced in the field. We tested the effects of one of the most commonly used fungicides on colony health by feeding honey bee colonies pollen containing Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) at four levels that bracketed concentrations we measured for pollen collected by bees in almond orchards. We also developed a method for calculating per-bee and per-larva dose. Pristine® consumption significantly and dose-dependently reduced worker lifespan and colony population size, with negative health effects observed even at the lowest doses. The lowest concentration we tested caused a 15% reduction in the worker population at an estimated dosage that was three orders of magnitude below the estimated LD₁₅ values for previous acute laboratory studies. The enhanced toxicity under field conditions is at least partially due to activation of colonial nutritional responses missed by lab tests. Pristine® causes colonies to respond to perceived protein malnutrition by increasing colony pollen collection. Additionally, Pristine induces much earlier transitioning to foraging in individual workers, which could be the cause of shortened lifespans. These findings demonstrate that Pristine® can negatively impact honey bee individual and colony health at concentrations relevant to what they experience from pollination behavior under current agricultural conditions.
اظهر المزيد [+] اقل [-]Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling
2021
Murcia-Morales, María | Díaz-Galiano, Francisco José | Vejsnæs, Flemming | Kilpinen, Ole | Van der Steen, Jozef J.M. | Fernández-Alba, Amadeo R.
Due to their extensive use in both agricultural and non-agricultural applications, pesticides are a major source of environmental contamination. Honey bee colonies are proven sentinels of these and other contaminants, as they come into contact with them during their foraging activities. However, active sampling strategies involve a negative impact on these organisms and, in most cases, the need of analyzing multiple heterogeneous matrices. Conversely, the APIStrip-based passive sampling is innocuous for the bees and allows for long-term monitorings using the same colony. The versatility of the sorbent Tenax, included in the APIStrip composition, ensures that comprehensive information regarding the contaminants inside the beehive will be obtained in one single matrix. In the present study, 180 APIStrips were placed in nine apiaries distributed in Denmark throughout a six-month sampling period (10 subsequent samplings, April to September 2020). Seventy-five pesticide residues were detected (out of a 428-pesticide scope), boscalid and azoxystrobin being the most frequently detected compounds. There were significant variations in the findings of the sampling sites in terms of number of detections, pesticide diversity and average concentration. A relative indicator of the potential risk of pesticide exposure for the honey bees was calculated for each sampling site. The evolution of pesticide detections over the sampling periods, as well as the individual tendencies of selected pesticides, is herein described. The findings of this large-scale monitoring were compared to the ones obtained in a previous Danish, APIStrip-based pilot monitoring program in 2019. Samples of honey and wax were also analyzed and compared to the APIStrip findings.
اظهر المزيد [+] اقل [-]Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera)
2021
Glass, Jordan R. | Fisher, Adrian | Fewell, Jennifer H. | DeGrandi-Hoffman, Gloria | Ozturk, Cahit | Harrison, Jon F.
Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.
اظهر المزيد [+] اقل [-]Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress
2021
Yu, Longtao | Yang, Heyan | Cheng, Fuping | Wu, Zhihao | Huang, Qiang | He, Xujiang | Yan, Weiyu | Zhang, Lizhen | Wu, Xiaobo
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
اظهر المزيد [+] اقل [-]The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees
2020
Fent, Karl | Schmid, Michael | Hettich, Timm | Schmid, Simon
Thiacloprid is widely used in agriculture and may affect pollinators. However, its molecular effects are poorly known. Here, we report the global gene expression profile in the brain of honey bee foragers assessed by RNA-sequencing. Bees were exposed for 72 h to nominal concentrations of 25 and 250 ng/bee via sucrose solution. Determined residue concentrations by LC-MS/MS were 0.59 and 5.49 ng/bee, respectively. Thiacloprid exposure led to 5 and 71 differentially expressed genes (DEGs), respectively. Nuclear genes encoding mitochondrial ribosomal proteins and enzymes involved in oxidative phosphorylation, as well as metabolism enzymes and transporters were altered at 5.49 ng/bee. Kyoto Encylopedia of Genes and Genomes (KEGG) analysis revealed that mitochondrial ribosome proteins, mitochondrial oxidative phosphorylation, pyrimidine, nicotinate and nicotinamide metabolism and additional metabolic pathways were altered. Among 21 genes assessed by RT-qPCR, the transcript of farnesol dehydrogenase involved in juvenile hormone III synthesis was significantly down-regulated. Transcripts of cyp6a14-like and apolipophorin-II like protein, cytochrome oxidase (cox17) and the non-coding RNA (LOC102654625) were significantly up-regulated at 5.49 ng/bee. Our findings indicate that thiacloprid causes transcriptional changes of genes prominently associated with mitochondria, particularly oxidative phosphorylation. This highlight potential effects of this neonicotinoid on energy metabolism, which may compromise bee foraging and thriving populations at environmentally relevant concentrations.
اظهر المزيد [+] اقل [-]Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.)
2020
Zhu, Lizhen | Qi, Suzhen | Xue, Xiaofeng | Niu, Xinyue | Wu, Liming
Recently, environmental risk and toxicity of neonicotinoid insecticides to honey bees have attracted extensive attention. However, toxicological understanding of neonicotinoid insecticides on gut microbiota is limited. In the present study, honey bees (Apis mellifera L.) were exposed to a series of nitenpyram for 14 days. Results indicated that nitenpyram exposure decreased the survival and food consumption of honey bees. Furthermore, 16S rRNA gene sequencing revealed that nitenpyram caused significant alterations in the relative abundance of several key gut microbiotas, which contribute to metabolic homeostasis and immunity. Using high-throughput RNA-Seq transcriptomic analysis, we identified a total of 526 differentially expressed genes (DEGs) that were significantly altered between nitenpyram-treated and control honey bee gut, including several genes related to metabolic, detoxification and immunity. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed nitenpyram affected several biological processes, of which most were related to metabolism. Collectively, our study demonstrates that the dysbiosis of gut microbiota in honey bee caused by nitenpyram may influence metabolic homeostasis and immunity of bees, and further decrease food consumption and survival of bees.
اظهر المزيد [+] اقل [-]Analysis and evaluation of (neuro)peptides in honey bees exposed to pesticides in field conditions
2018
Gómez-Ramos, María del Mar | Gómez Ramos, María José | Martínez Galera, María | Gil García, María Dolores | Fernández-Alba, Amadeo R.
During the last years, declines in honey bee colonies are being registered worldwide. Cholinergic pesticides and their extensive use have been correlated to the decline of pollinators and there is evidence that pesticides act as neuroendocrine disruptors affecting the metabolism of neuropeptides. However, there is a big absence of studies with quantitative results correlating the effect of pesticide exposure with changes on neuropeptides insects, and most of them are conducted under laboratory conditions, typically with individual active ingredients. In this study, we present an analytical workflow to evaluate pesticide effects on honey bees through the analysis of (neuro)peptides. The workflow consists of a rapid extraction method and liquid chromatography with triple quadrupole for preselected neuropeptides. For non-target analysis, high resolution mass spectrometry, multivariate analysis and automatic identification of discriminated peptides using a specific software and protein sequence databases. The analytical method was applied to the analysis of target and non-target (neuro)peptides in honey bees with low and high content of a wide range of pesticides to which have been exposed in field conditions. Our findings show that the identification frequency of target neuropeptides decreases significantly in honey bees with high concentration of pesticides (pesticide concentrations ≥ 500 μg kg⁻¹) in comparison with the honey bees with low content of pesticides (pesticide concentrations ≤ 20 μg kg⁻¹). Moreover, the principal component analysis in non-target search shows a clear distinction between peptide concentration in honey bees with high level of pesticides and honey bees with low level. The use of high resolution mass spectrometry has allowed the identification of 25 non-redundant peptides responsible for discrimination between the two groups, derived from 18 precursor proteins.
اظهر المزيد [+] اقل [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, André | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, L. P. (Luc P.)
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/μL, 0.001 ng/μL and 1.44 ng/μL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages of the honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
اظهر المزيد [+] اقل [-]