خيارات البحث
النتائج 1 - 10 من 30
Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties
2022
Sun, Simiao | Feng, Yuhan | Huang, Guodong | Zhao, Xu | Song, Fuqiang
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF–crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m²/s, and the optical compensation point reached 24.0 μmol/m²/s under Cd stress. The Ri–hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri–hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri–hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
اظهر المزيد [+] اقل [-]Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality
2021
Wang, Gen | Wang, Li | Ma, Fang | Yang, Dongguang | You, Yongqiang
Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0–120 mg kg⁻¹). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15–60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg⁻¹ Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22–117%), chlorophyll content (17–63%), antioxidant levels (SOD 10–18%, POD 9–25%, total polyphenols 17–22%, flavonoids 15–29%, and glutathione 7–61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20–27%), superoxide anion (29–36%), and hydrogen peroxide (19–30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
اظهر المزيد [+] اقل [-]Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels
2019
Pufal, Gesine | Memmert, Jörg | Leonhardt, Sara Diana | Minden, Vanessa
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown.We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
اظهر المزيد [+] اقل [-]Disruption of trophic interactions involving the heather beetle by atmospheric nitrogen deposition
2016
Taboada, Angela | Marcos, Elena | Calvó, Leonor
Elevated nitrogen (N) deposition impacts the structure and functioning of heathland ecosystems across Europe. Calluna plants under high N-inputs are very sensitive to secondary stress factors, including defoliation attacks by the heather beetle. These attacks result in serious damage or death of Calluna, its rapid replacement by grasses, and the subsequent loss of heathland. We know very little about the mechanisms that control the populations and trigger outbreaks of the heather beetle, impeding proper management measures to mitigate the damage. We investigated the effects of N deposition on the relationships between the heather beetle, its host plant, and two arthropod predators at building (rejuvenated through fire) and mature heathlands. The study combines field manipulation experiments simulating a range of N deposition rates (0, 1, 2, 5 g N m−2 year−1 for 2 years, and 5.6 g N m−2 year−1 for 10 years), and food-choice laboratory experiments testing the preferences of adults and larvae of the heather beetle for N-treated Calluna plants, and the preferences of predators for larvae grown on plants with different N-content. The larvae of the heather beetle achieved the highest abundances after the long-term (10-year) addition of N at mature Calluna plots in the field. Contrary to the adults, the larvae foraged preferentially on the most N-rich Calluna shoots under laboratory conditions. Predators showed no aggregative numerical responses to the accumulation of heather beetle larvae at high N-input experimental plots. During the feeding trials, predators consumed a small number of larvae, both in total and per individual, and systematically avoided eating the larvae reared on high-N Calluna shoots. Our study showed that the most severe defoliation damage by the heather beetle is inflicted at the larval stage under prolonged availability of high-N inputs, and that arthropod predators might not act as effective regulators of the beetle's populations.
اظهر المزيد [+] اقل [-]Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions
2013
Aranda, Elisabet | Scervino, José Martín | Godoy, Patricia | Reina, Rocío | Ocampo, Juan Antonio | Wittich, Regina-Michaela | García-Romera, Inmaculada
Polycyclic aromatic hydrocarbons (PAHs) are one of the most common contaminants in soil. Arbuscular mycorrhizal (AM) fungi make host plants resistant to pollutants. This study aims to evaluate the impact of anthracene, phenanthrene and dibenzothiophene on the AM fungus Rhizophagus custos, isolated from soil contaminated by heavy metals and PAHs, under monoxenic conditions. We found a high level of tolerance in R. custos to the presence of PAHs, especially in the case of anthracene, in which no negative effect on AM-colonized root dry weight (root yield) was observed, and also a decrease in the formation of anthraquinone was detected. Increased PAH dissipation in the mycorrhizal root culture medium was observed; however, dissipation was affected by the level of concentration and the specific PAH, which lead us to a better understanding of the possible contribution of AM fungi, and in particular R. custos, to pollutant removal.
اظهر المزيد [+] اقل [-]Biodegradation of diuron by endophytic Bacillus licheniformis strain SDS12 and its application in reducing diuron toxicity for green algae
2019
Singh, Anil Kumar | Singla, Poonam
The endophytic bacteria live in close nuptial relationship with the host plant. The stress experienced by the plant is expected to be transferred to the endophytes. Thus, plants thriving at polluted sites are likely to harbor pollutant-degrading endophytes. The present study reports the isolation of phenylurea herbicides assimilating Bacillus sps. from Parthenium weed growing at diuron-contaminated site. The isolated endophytes exhibited plant growth–promoting (PGP) activities. Among five isolated diuron-degrading endophytes, the most efficient isolate Bacillus licheniformis strain SDS12 degraded 85.60 ± 1.36% of 50 ppm diuron to benign form via formation of degradation intermediate 3, 4-dichloroaniline (3,4-DCA). Cell-free supernatant (CFS) obtained after diuron degradation by strain SDS12 supported algal growth comparable with the pond water. The chlorophyll content and photosynthetic efficiency of green algae decreased significantly in the presence of diuron-contaminated water; however, no such change was observed in CFS of strain SDS12, thus, suggesting that strain SDS12 can be applied in aquatic bodies for degrading diuron and reducing diuron toxicity for primary producers. Further, the use of PGP and diuron-degrading bacteria in agriculture fields will not only help in remediating the soil but also support plant growth.
اظهر المزيد [+] اقل [-]Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus
2018
Wang, Fayuan | Jing, Xinxin | Adams, Catharine A. | Shi, Zhaoyong | Sun, Yuhuan
ZnO nanoparticles (NPs) are applied in a wide variety of applications and frequently accumulate in the environment, thus posing risks to the environment and human health. Arbuscular mycorrhizal (AM) fungi (AMF) associate symbiotically with roots of most higher plants, helping their host plants acquire phosphorus (P). AMF can reduce the toxicity of ZnO NPs, but the benefits of AMF to host plants highly vary with soil available P. We hypothesize that organic P may help AMF to alleviate ZnO NP phytotoxicity. Here, we investigated the effects of inoculation with Funneliformis mosseae on plant growth and Zn accumulation, using maize grown in soil-sand mix substrates spiked with ZnO NPs (0 or 500 mg kg⁻¹) under different organic P supply levels (0, 20, or 50 mg kg⁻¹). The results showed addition of ZnO NPs inhibited root colonization rate, increased the shoot/root P concentration ratio, and led to significant Zn accumulation in soil and plants. As predicted, AM effects on maize plants all varied with P supply levels, both with or without ZnO NP additions. Organic P interacted synergistically with AMF to promote plant growth and acquisition of P, N, K, Fe, and Cu. AM inoculation reduced the bioavailable Zn released from ZnO NPs and decreased the concentrations and translocation of Zn to maize shoots. In conclusion, ZnO NPs caused excess Zn in soil and plants, posing potential environmental risks. However, our present results first demonstrate that organic P exhibited similar positive effects to AMF and interacted synergistically with AMF to improve plant growth and nutrition, and to decrease Zn accumulation and partitioning in plants, and thus helped diminish the adverse effects induced by ZnO NPs.
اظهر المزيد [+] اقل [-]Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities
2011
Pritchina, Olga | Ely, Cairn | Smets, Barth F.
Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca sativa var. Tango), zucchini (Cucurbita pepo spp. pepo var. Black Beauty), and pumpkin (C. pepo spp. pepo var. Howden) 16S rDNA terminal restriction fragment length polymorphism (T-RFLP) profiles of rhizosphere microbial communities from different soil/plant combinations were compared with a pairwise Pearson correlation coefficient. Rhizosphere microbial communities of zucchini and pumpkin grown in the media amended with highest degree of contaminated soil clustered separately, whereas communities of these plants grown in unamended or amended with lower concentrations of contaminated soil, grouped in a second cluster. Lettuce communities grouped similarly to cucurbits communities, whereas wheat communities did not display an obvious clustering. The variability of 16S rDNA T-RFLP profiles among the different plant/soil treatments were mostly due to the difference in relative abundance rather than presence/absence of T-RFLP fragments. Our results suggest that in highly contaminated soils, the rhizosphere microbial community structure is governed more by the degree of contamination rather than the plant host type.
اظهر المزيد [+] اقل [-]Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining–degraded soil by increasing photosynthetic carbon assimilation and allocation to maize
2022
Bi, Yinli | Wang, Xiao | Cai, Yun | Christie, Peter
A three-compartment culture system was used to study the mechanism by which the AM fungus Funneliformis mosseae influences host plant growth and soil organic carbon (SOC) content in a northwest China coal mining area. A ¹³CO₂ pulse tracing technique was used to trace the allocation of maize photosynthetic C in shoots, roots, AM fungus, and soil. Carbon accumulation and allocation in mycorrhizal (inoculated with Funneliformis mosseae) and non-mycorrhizal treatments were detected. AM fungal inoculation significantly increased the ¹³C concentration and content in both above- and below-ground plant parts and also significantly enhanced anti-aging ability by increasing soluble sugars and catalase activity (CAT) in maize leaves while reducing foliar malondialdehyde content (MDA) and leaf temperature and promoted plant growth. AM fungi also increased P uptake to promote maize growth. Soil organic carbon (SOC), glomalin, microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly after inoculation. A mutually beneficial system was established involving maize, the AM fungus and the microbiome, and the AM fungus became an important regulator of C flux between the above- and below-ground parts of the system. Inoculation with the AM fungus promoted plant growth, C fixation and allocation belowground to enhance soil quality. A positive above-belowground feedback appeared to be established.
اظهر المزيد [+] اقل [-]Role of AM Fungi in the Uptake and Accumulation of Cd and Ni by Luffa aegyptiaca
2019
Kalam, Saqib Ul | Naushin, Fauzia | Bagyaraj, D. J. | Khan, Fareed A.
Sponge gourd (Luffa aegyptiaca) was grown in pots with and without inoculation with two arbuscular mycorrhizal (AM) fungi, viz., Glomus macrocarpum and Glomus monosporum singly and in combination. Seven-day-old plants were treated with 18.9 μg Cd g⁻¹ soil and 155.4 μg Ni g⁻¹ soil alone and in combination. At 90 days old stage, dry weight of root, shoot, and fruit; uptake of heavy metals in root, stem, leaves, and fruits; percent mycorrhizal root colonization; and spore number in the root zone were determined. When applied singly, the uptake of Cd and Ni in host plants was enhanced more effectively by G. monosporum than G. macrocarpum. The larger proportion of Cd uptake in uninoculated host was retained in the roots but in inoculated plants (with both Glomus sp.), major amounts of the Cd were translocated to the above ground parts including fruits. The leaves were the main sinks of Ni in inoculated plants. The overall tissue burden of both heavy metals in the host was enhanced relatively more effectively on association with G. monosporum as compared with G. macrocarpum. The uptake of Cd was relatively higher in plants treated with both the metals and both the AM fungi. Despite the relatively higher uptake of both the heavy metals in inoculated plants, the host dry weight was significantly higher compared with uninoculated plants. The percent mycorrhizal root colonization of the host by both AM fungi was higher in plants grown without either of the heavy metals. The combined application of both the heavy metals reduced the spore density in the root zone soil of host. The results show that the AM fungi enhanced the uptake of Cd and Ni by the host but alleviated the toxicity by promoting plant growth.
اظهر المزيد [+] اقل [-]