خيارات البحث
النتائج 1 - 10 من 41
Heavy metal pollution of soils and risk assessment in Houston, Texas following Hurricane Harvey
2022
Han, Inkyu | Whitworth, Kristina W. | Christensen, Brian | Afshar, Masoud | An Han, Heyreoun | Rammah, Amal | Oluwadairo, Temitope | Symanski, Elaine
In August 2017, after Hurricane Harvey made landfall, almost 52 inches of rain fell during a three-day period along the Gulf Coast Region of Texas, including Harris County, where Houston is located. Harris County was heavily impacted with over 177,000 homes and buildings (approximately 12 percent of all buildings in the county) experiencing flooding. The objective of this study was to measure 13 heavy metals in soil in residential areas and to assess cancer and non-cancer risk for children and adults after floodwaters receded. Between September and November 2017, we collected 174 surface soil samples in 10 communities, which were classified as “High Environmental Impact” or “Low Environmental Impact” communities, based on a composite metric of six environmental parameters. A second campaign was conducted between May 2019 and July 2019 when additional 204 soil samples were collected. Concentrations of metals at both sampling campaigns were higher in High Environmental Impact communities than in Low Environmental Impact communities and there was little change in metal levels between the two sampling periods. The Pollution Indices of lead (Pb), zinc, copper, nickel, and manganese in High Environmental Impact communities were significantly higher than those in Low Environmental Impact communities. Further, cancer risk estimates in three communities for arsenic through soil ingestion were greater than 1 in 1,000,000. Although average soil Pb was lower than the benchmark of the United States Environmental Protection Agency, the hazard indices for non-cancer outcomes in three communities, mostly attributed to Pb, were greater than 1. Health risk estimates for children living in these communities were greater than those for adults.
اظهر المزيد [+] اقل [-]Persistent organic pollutants in eggs from south Texas Aplomado falcons
2021
Hidalgo, Chelsea M. | Mora, Miguel A. | Sericano, Jose L. | Mutch, Brian D. | Juergens, Paul W.
A program to reintroduce the Northern Aplomado falcon (Falco femoralis septentrionalis) in south Texas and the southwestern United States was initiated in the late 1970s. Fledgling Aplomado falcons were first released in the Laguna Atascosa National Wildlife Refuge in 1993 and the first nesting pair in the area was recorded by 1995. During 2004–2017 we collected addled eggs from nesting pairs in the Laguna Atascosa National Wildlife Refuge and Matagorda Island in south Texas, to determine if environmental contaminants in Aplomado falcon eggs had decreased over time and if eggshell thickness values were similar to those in the pre-DDT era. We analyzed organochlorine pesticides, PCBs, and PBDEs in 60 egg homogenates by gas chromatography-mass spectrometry. Eggshells were measured to determine thickness and to correlate with contaminant concentrations. Mean concentration in eggs were 244 ng/g ww for p,p’- DDE, 270 ng/g ww for PCBs and 10 ng/g ww for PBDEs. These values were lower than those reported in a previous study for eggs collected between 1999 and 2003, with a mean of 821 ng/g ww for p,p’-DDE and 1228 ng/g ww for total PCBs. Eggshell thickness ranged from 0.206 mm to 0.320 mm (n = 156). Overall, contaminant concentrations in eggs of Aplomado falcons were low, at levels not likely to impact the recovery of the species. Data from this and previous studies indicate that DDE has decreased significantly in eggs of Aplomado falcons over the last 25 years in south Texas. Breeding populations have been steady at over 30 breeding pairs in south Texas since 2011, although they decreased to 24 pairs in 2018 following Hurricane Harvey.
اظهر المزيد [+] اقل [-]Causes of ozone pollution in summer in Wuhan, Central China
2018
Zeng, P. | Lyu, X.P. | Guo, H. | Cheng, H.R. | Jiang, F. | Pan, W.Z. | Wang, Z.W. | Liang, S.W. | Hu, Y.Q.
In August 2016, continuous measurements of volatile organic compounds (VOCs) and trace gases were conducted at an urban site in Wuhan. Four high-ozone (O3) days and twenty-seven non-high-O3 days were identified according to the China's National Standard Level II (∼100 ppbv). The occurrence of high-O3 days was accompanied by tropical cyclones. Much higher concentrations of VOCs and carbon monoxide (CO) were observed on the high-O3 days (p < 0.01). Model simulations revealed that vehicle exhausts were the dominant sources of VOCs, contributing 45.4 ± 5.2% and 37.3 ± 2.9% during high-O3 and non-high-O3 days, respectively. Both vehicle exhausts and stationary combustion made significantly larger contributions to O3 production on high-O3 days (p < 0.01). Analysis using a chemical transport model found that local photochemical formation accounted for 74.7 ± 5.8% of the daytime O3, around twice the regional transport (32.2 ± 5.4%), while the nighttime O3 was mainly attributable to regional transport (59.1 ± 9.9%). The local O3 formation was generally limited by VOCs in urban Wuhan. To effectively control O3 pollution, the reduction ratio of VOCs to NOx concentrations should not be lower than 0.73, and the most efficient O3 abatement could be achieved by reducing VOCs from vehicle exhausts. This study contributes to the worldwide database of O3-VOC-NOx sensitivity research. Its findings will be helpful in formulating and implementing emission control strategies for dealing with O3 pollution in Wuhan.
اظهر المزيد [+] اقل [-]Photochemical trajectory modeling of ozone concentrations in Hong Kong
2013
Cheng, H.R. | Saunders, S.M. | Guo, H. | Louie, P.K.K. | Jiang, F.
In this study, tropical cyclones over the East and South China Seas were found to be the most predominant weather conditions associated with the occurrence of high ozone (O3) episodes in Hong Kong in 2005–2009. A photochemical trajectory model coupled with Master Chemical Mechanism (MCM) was adapted to simulate the O3 concentrations during two O3 pollution episodes. The results agreed well with the observed data. A representative backward air mass trajectory was used to determine the contribution of each volatile organic compound (VOC) to the O3 levels. After taking into account both reactivity and mass emission of each VOC, 10 species were found to be the key O3 precursors in Hong Kong. Further analysis identified solvent related products accounting for 70% of the modeled O3 concentration in Hong Kong. The results highlight the importance of considering together reactivity and source sector emissions in developing targeted VOC reduction for O3 abatement strategies.
اظهر المزيد [+] اقل [-]Tropical cyclone effects on water and sediment chemistry and the microbial community in estuarine ecosystems
2021
Huang, Shan | Sherman, Arianna | Chen, Chen | Jaffe, Peter R.
Frequent and intense storm disturbances can have widespread and strong effects on the nitrogen and iron cycles and their associated microbial communities in estuary systems. A three-year investigation was conducted in the Pearl River and Zhanjiang estuaries in Guangdong Province, China through repeated sampling at three timepoints, defined as pre-storm (<1 month before storm), post-storm (<1 month after storm), and non-storm (6–8 months after storm). Increased nutrient concentrations (total organic carbon, nitrate, nitrite, ammonium, and sulfate) in both the sediment and water column were observed immediately after storm. The microbial community experienced extensive and immediate changes determined by an observed composition shift in the nitrogen and iron-cycling microbiomes. Analysis of sediment samples displayed a shift from nitrogen-to sulfur-cycling microorganisms and an increase in microbial interactions that were not observed in the water column. The chemical profile and microbial community components both returned to baseline conditions 6–8 months following storm disturbance. Finally, significant correlations were found between chemical and microbial data, suggesting that niche-sharing microbes may respond similarly to stimuli that impact their ecosystem. Increases in nutrient availability can favor the abundance of specific taxa, as demonstrated by an increase in Acidimicrobium that affect both nitrogen and iron cycling.
اظهر المزيد [+] اقل [-]Seasonal variation in the abundance of marine plastic debris in Banderas Bay, Mexico
2019
Pelamatti, Tania | Fonseca-Ponce, Iliana A. | Rios-Mendoza, Lorena M. | Stewart, Joshua D. | Marín-Enríquez, Emigdio | Marmolejo-Rodriguez, Ana J. | Hoyos-Padilla, Edgar M. | Galván-Magaña, Felipe | González-Armas, Rogelio
A floating plastic monitoring program was conducted for two years on a weekly basis in Banderas Bay, Mexico. A total of 94 samples were collected from May 2016 to April 2018 in the southern part of the bay. Half (57%) of them contained plastic debris; 79% of it being <5 mm in length. Polypropylene and Polyethylene were the most abundant polymers, accounting for 45% and 43% of the plastic pieces (pp), respectively. The highest abundance of plastic pieces was found in July 2016, with a maximum of 0.3 pp/m³ found in one sample. The amount of floating plastics was significantly higher in the hurricane season compared to the dry season (p < 0.001). This suggests that rainfall may play a significant role in the offload of plastics from land-based sources into the bay.
اظهر المزيد [+] اقل [-]Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico
2018
Sun, Shaojie | Hu, Chuanmin | Garcia-Pineda, Oscar | Kourafalou, Vassiliki | Le Hénaff, Matthieu | Androulidakis, Yannis
An oil platform in the Mississippi Canyon 20 (MC-20) site was damaged by Hurricane Ivan in September 2004. In this study, we use medium- to high-resolution (10–30 m) optical remote sensing imagery to systematically assess oil spills near this site for the period between 2004 and 2016. Image analysis detects no surface oil in 2004, but ~40% of the cloud-free images in 2005 show oil slicks, and this number increases to ~70% in 2006–2011, and >80% since 2012. For all cloud-free images from 2005 through 2016 (including those without oil slicks), delineated oil slicks show an average oil coverage of 14.9 km2/image, with an estimated oil discharge rate of 48 to ~1700 barrels/day, and a cumulative oil-contaminated area of 1900 km2 around the MC-20 site. Additional analysis suggests that the detected oil slick distribution can be largely explained by surface currents, winds, and density fronts.
اظهر المزيد [+] اقل [-]Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012–13
2016
Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.
اظهر المزيد [+] اقل [-]Comparison of wastewater-associated contaminants in the bed sediment of Hempstead Bay, New York, before and after Hurricane Sandy
2016
Fisher, Shawn C. | Phillips, Patrick J. | Brownawell, Bruce J. | Browne, James P.
Changes in bed sediment chemistry of Hempstead Bay (HB) have been evaluated in the wake of Hurricane Sandy, which resulted in the release of billions of liters of poorly-treated sewage into tributaries and channels throughout the bay. Surficial grab samples (top 5cm) collected before and (or) after Hurricane Sandy from sixteen sites in HB were analyzed for 74 wastewater tracers and steroid hormones, and total organic carbon. Data from pre- and post-storm comparisons of the most frequently detected wastewater tracers and ratios of steroid hormone and of polycyclic aromatic hydrocarbon concentrations indicate an increased sewage signal near outfalls and downstream of where raw sewage was discharged. Median concentration of wastewater tracers decreased after the storm at sites further from outfalls. Overall, changes in sediment quality probably resulted from a combination of additional sewage inputs, sediment redistribution, and stormwater runoff in the days to weeks following Hurricane Sandy.
اظهر المزيد [+] اقل [-]Roles of Atmospheric Aerosols in Extreme Meteorological Events: a Systematic Review
2022
Wang, Zilin | Xue, Lian | Liu, Jingyi | Ding, Ke | Lou, Sijia | Ding, Aijun | Wang, Jiandong | Huang, Xin
PURPOSE OF REVIEW: Atmospheric aerosol from both natural and anthropogenic activities has long been acknowledged as one of the important factors influencing regional and global climate change. Many regions around the globe experienced high aerosol loadings because of intensive emissions, yet the roles of atmospheric aerosols in extreme meteorological and air pollution events have not been well demonstrated due mainly to the complexity of atmospheric physical and chemical interaction at mesoscale and even microscale. Here, we present a comprehensive review of current understanding on the role of atmospheric aerosols in the development and evolution of extreme meteorological events, including monsoon circulation, heat waves, extreme rainfall, tornadoes, and severe air pollution. RECENT FINDINGS: Aerosols could participate in the development of meteorological systems through direct and indirect effects. Large-scale precipitation from shallow stratiform clouds was found to be suppressed by aerosols, while invigoration effects contribute to deep convection and even catastrophic floods in local areas. The occurrence of high-impact weather such as tornadoes and tropical cyclone is also related to aerosol concentration and distribution. Moreover, a positive feedback between aerosols and boundary layer meteorology is proposed as an important factor conducive to heavy haze pollution over urban areas. The work underscores the great importance of aerosols’ meteorological feedback in extreme weather events. Integrated observations and seamless coupling of meteorology and atmospheric chemistry in models are highlighted for future studies to fill the knowledge gap in current research.
اظهر المزيد [+] اقل [-]