خيارات البحث
النتائج 1 - 10 من 23
Neurobehavioural toxicity of a chronic exposure to the airborne polycyclic aromatic hydrocarbon fluorene in adult wistar male rats: a preliminary study about the effects of a 28 day administration using the intraperitoneal or the oral way
2008
Rychen, Guido | Schroeder, Henri
Analysis of petroleum-contaminated soils by diffuse reflectance spectroscopy and sequential ultrasonic solvent extraction–gas chromatography
2014
Okparanma, Reuben N. | Coulon, Frederic | Mouazen, Abdul M.
In this study, we demonstrate that partial least-squares regression analysis with full cross-validation of spectral reflectance data estimates the amount of polycyclic aromatic hydrocarbons in petroleum-contaminated tropical rainforest soils. We applied the approach to 137 field-moist intact soil samples collected from three oil spill sites in Ogoniland in the Niger Delta province (5.317°N, 6.467°E), Nigeria. We used sequential ultrasonic solvent extraction–gas chromatography as the reference chemical method. We took soil diffuse reflectance spectra with a mobile fibre-optic visible and near-infrared spectrophotometer (350–2500 nm). Independent validation of combined data from studied sites showed reasonable prediction precision (root-mean-square error of prediction = 1.16–1.95 mg kg−1, ratio of prediction deviation = 1.86–3.12, and validation r2 = 0.77–0.89). This suggests that the methodology may be useful for rapid assessment of the spatial variability of polycyclic aromatic hydrocarbons in petroleum-contaminated soils in the Niger Delta to inform risk assessment and remediation.
اظهر المزيد [+] اقل [-]Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil
2016
Ingrid, Lenoir | Lounès-Hadj Sahraoui, Anissa | Frédéric, Laruelle | Yolande, Dalpé | Joël, Fontaine
Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots.
اظهر المزيد [+] اقل [-]Mapping polycyclic aromatic hydrocarbon and total toxicity equivalent soil concentrations by visible and near-infrared spectroscopy
2014
Okparanma, Reuben N. | Coulon, Frederic | Mayr, Thomas | Mouazen, Abdul M.
In this study, we used data from spectroscopic models based on visible and near-infrared (vis-NIR; 350–2500 nm) diffuse reflectance spectroscopy to develop soil maps of polycyclic aromatic hydrocarbons (PAHs) and total toxicity equivalent concentrations (TTEC) of the PAH mixture. The TTEC maps were then used for hazard assessment of three petroleum release sites in the Niger Delta province of Nigeria (5.317°N, 6.467°E). As the paired t-test revealed, there were non-significant (p > 0.05) differences between soil maps of PAH and TTEC developed with chemically measured and vis-NIR-predicted data. Comparison maps of PAH showed a slight to moderate agreement between measured and predicted data (Kappa coefficient = 0.19–0.56). Using proposed generic assessment criteria, hazard assessment showed that the degree of action for site-specific risk assessment and/or remediation is similar for both measurement methods. This demonstrates that the vis-NIR method may be useful for monitoring hydrocarbon contamination in a petroleum release site.
اظهر المزيد [+] اقل [-]Comparison of the emission factors of air pollutants from gasoline, CNG, LPG and diesel fueled vehicles at idle speed
2022
Aosaf, Miahn Rasheeq | Wang, Yang | Du, Ke
The emission factor (EF) is a parameter used to assess vehicle emissions. Many studies have reported EFs for vehicles in driving conditions. However, the idling emissions should not be neglected in characterizing actual vehicle emissions in congested large cities, where idling is very common on the road. Whereas, EF data for idling vehicles have scarcely been reported in the literature, let alone comparison of different fuels. In this study, the EFs of passenger cars burning four types of fuels - gasoline, compressed natural gas (CNG), diesel, and liquefied petroleum gas (LPG) were measured and compared. The emissions data for CO, CO₂, unburned hydrocarbon (HC), and NO were recorded to calculate fuel-based EFs in units of g pollutants/kg fuel burned. EFs for CO, HC, and NO were compared for the four fuels. Diesel vehicles had the highest EF for CO, with an average value of 35.12 ± 21.37 g/kg fuel, due to low concentration of CO₂ in lean operation compared to CO emission. CNG vehicles had the highest EF for HC, with an average value of 28.15 ± 11.97 g/kg fuel, due to high concentration of unburned methane gas due to slow CNG flame speed whereas diesel vehicles again had the highest EF for NO due to high temperature and pressure and freezing of NO decomposition reaction, with an average value of 12.07 ± 5.37 g/kg fuel. Further comparison was conducted to analyze the effects of two additional variables on EF: engine displacement volume and model/brand year. Only the gasoline-fueled vehicles showed an increase in EFs (for CO, HC and NO) with the vehicle age according to the model year. However, no clear correlation was observed for CNG, LPG, and diesel-fueled vehicles. Finally, the EF results were compared with those reported in the literature, which have been measured in various countries under both idling and non-idling conditions. Because the idling EFs were not substantially smaller than those under moving conditions, and vehicles spend substantial time idling in large cities, idling emissions should not be ignored in the emission inventories for large cities.
اظهر المزيد [+] اقل [-]Comparative analysis of urban road dust compositions in relation to their potential human health impacts
2019
Koh, Byumseok | Kim, Eun-Ah
This study investigated the chemical components of fine urban road dust from seven sampling sites, based on which we could predict potential human health effects. The elemental compositions, including the contents of metals and volatile or semivolatile organic compounds, were determined to establish comprehensive chemical profiles of solid road dust. The chemical profiles, consisting of C: H ratio, metal contents, and relative abundances of organic compounds, provided a chemical signature for road dust. To overall cytotoxicity values ranging between 7 and 58%, water extracts contributed less than 15%, and cell death mainly occurred via direct contact with solid-phase components, which possibly indicates that the selected chemical profile of solid-phase road dust components could serve as a strong predictor for BJ and WI-38 cytotoxicity. Pure metal oxides (Cr₂O₃, CuO, Fe₂O₃, MnO₂, NiO, or ZnO) exhibited a positive dose-response, and the corresponding metal contents in solid road dust were well correlated with cell viability. The principal component analysis (PCA) results suggested that the metal contents were stronger predictors of cytotoxicity than the benzene derivative or hydrocarbon contents. The chemical profiles established in this study could be further utilized to identify candidate health hazard factors in road dust.
اظهر المزيد [+] اقل [-]Gas flaring and resultant air pollution: A review focusing on black carbon
2016
Fawole, Olusegun G. | Cai, X.-M. | MacKenzie, A.R.
Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth’s climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, “soot”). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies.
اظهر المزيد [+] اقل [-]Effects of enhanced bioturbation intensities on the toxicity assessment of legacy-contaminated sediments
2016
Remaili, Timothy M. | Simpson, Stuart L. | Jolley, Dianne F.
Many benthic communities within estuarine ecosystems are highly degraded due to the close proximity of urban and industrial contamination sources. The maintenance of recolonised, healthy ecosystems following remediation is a challenge, and better techniques are required for monitoring their progressive recovery. Rates of ecosystem recovery are influenced by the changes in the concentrations and forms of contaminants, the sensitivity of recolonising organisms to bioavailable contaminants, and a range of abiotic and biotic factors influencing the exposure of organisms to the contamination. Here we investigate the influence of bioturbation by an active amphipod (Victoriopisa australiensis) on the bioavailability of metals and hydrocarbons in highly contaminated sediments. Changes in contaminant bioavailability were evaluated by assessing sublethal effects to a smaller cohabiting amphipod (Melita plumulosa). For predominantly metal-contaminated sediments, the presence of V. australiensis generally increased survival and reproduction of M. plumulosa when compared to treatments with only M. plumulosa present (from 42 to 93% survival and from 3 to 61% reproduction). The decrease in toxic effects to M. plumulosa corresponded with lower dissolved copper and zinc concentrations in the overlying waters (14 to 9 μg Cu L−1, and 14 to 6 μg Zn L−1 for absence to presence of V. australiensis). For sediments contaminated with both hydrocarbons and metals, the increased bioturbation intensity by V. australiensis resulted in decreased reproduction of M. plumulosa, despite lower dissolved metal exposure, and indicated increased bioavailability of the hydrocarbon contaminants. Thus, the presence of a secondary active bioturbator can enhance or suppress toxicity to co-inhabiting organisms, and may depend on the contaminant class and form. The results highlight the need to consider both abiotic and biotic interactions when using laboratory studies to evaluate the ability of organisms to recolonise and reproduce within benthic environments degraded by contamination, or for more general extrapolation for sediment quality assessment purposes.
اظهر المزيد [+] اقل [-]Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters
2013
Spier, Chelsea | Stringfellow, William T. | Hazen, Terry C. | Conrad, Mark
The explosion of the Deepwater Horizon oil platform on April 20th, 2010 resulted in the second largest oil spill in history. The distribution and chemical composition of hydrocarbons within a 45 km radius of the blowout was investigated. All available certified hydrocarbon data were acquired from NOAA and BP. The distribution of hydrocarbons was found to be dispersed over a wider area in subsurface waters than previously predicted or reported. A deepwater hydrocarbon plume predicted by models was verified and additional plumes were identified. Because the samples were not collected systematically, there is still some question about the presence and persistence of an 865 m depth plume predicted by models. Water soluble compounds were extracted from the rising oil in deepwater, and were found at potentially toxic levels outside of areas previously reported to contain hydrocarbons. Application of subsurface dispersants was found to increase hydrocarbon concentration in subsurface waters.
اظهر المزيد [+] اقل [-]Variables affecting the plankton network in Mediterranean ports
2020
Rossano, Claudia | Milstein, Ana | Nuccio, Caterina | Tamburini, Elena | Scapini, Felicita
Attention on port waters is increasing since these economically important infrastructures are embedded in the coastal environment and their management needs to be considered in the monitoring programmes of coastal ecosystems. To implement the sustainable development (blue growth) of port areas, a general knowledge on the ongoing processes in their waters needs to be obtained, considering both abiotic and biotic variables. The present study aimed at inspecting the relationships among plankton components to provide insights into the ecology of ports. Seasonal samplings were carried out in three Mediterranean touristic ports where bacterio-, phyto- and zoo-plankton were simultaneously assessed at a large spatial scale and compared with respect to environmental variables and anthropogenic inputs. Factor analysis revealed the effects of load of inland waters, seasonality, water turbulence and hydrocarbon pollution on the planktonic components and zooplankton variability in port sectors characterized by different depths and uses.
اظهر المزيد [+] اقل [-]