خيارات البحث
النتائج 1 - 10 من 285
Effect of long term exposure to hydrogen fluoride on grapevines.
1984
Murray F.
Opposite impact of DOM on ROS generation and photoaging of aromatic and aliphatic nano- and micro-plastic particles
2022
Cao, Runzi | Liu, Xinna | Duan, Jiajun | Gao, Bowen | He, Xiaosong | Nanthi Bolan, | Li, Yang
Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV₃₆₅ irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C–C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.
اظهر المزيد [+] اقل [-]The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: A combined thermodynamic evidence, spectroscopic analysis and theoretical calculations
2022
Fang, Zheng | Gao, Yurong | Zhang, Fangbin | Zhu, Kaipeng | Shen, Zihan | Liang, Haixia | Xie, Yue | Yu, Chenglong | Bao, Yanping | Feng, Bo | Bolan, Nanthi | Wang, Hailong
Garden pruning waste is becoming a problem that intensifies the garbage siege. It is of great significance to purify polluted water using biochar prepared from garden pruning waste. Herein, the interaction mechanism between BPS and oriental plane tree biochar (TBC) with different surface functional groups was investigated by adsorption experiments, spectroscopic analysis and theoretical calculations. Adsorption kinetics and isotherm of BPS on TBC can be satisfactorily fitted into pseudo-second-order kinetic and Langmuir models, respectively. A rapid adsorption kinetic toward BPS was achieved by TBC in 15 min. As compared with TBC prepared at low temperature (300 °C) (LTBC), the maximum adsorption capacity of TBC prepared at high temperature (600 °C) (HTBC) can be significantly improved from 46.7 mg g⁻¹ to 72.9 mg g⁻¹. Besides, the microstructure and surface functional groups of HTBC were characterized using SEM, BET-N₂, and XPS analysis. According to density functional theory (DFT) theoretical calculations, the higher adsorption energy of HTBC for BPS was mainly attributed to π-π interaction rather than hydrogen bonding, which was further supported by the analysis of FTIR and Raman spectra as well as the adsorption thermodynamic parameters. These findings suggested that by improving π-π interaction through high pyrolysis temperature, BPS could be removed and adsorbed by biochar with high efficacy, cost-efficiency, easy availability, and carbon-negative in nature, contributing to global carbon neutrality.
اظهر المزيد [+] اقل [-]Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
اظهر المزيد [+] اقل [-]Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment
2022
Cheng, Tangying | Li, Jinjin | Ma, Xiuwei | Zhou, Lei | Wu, Hao | Yang, Linjun
The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.
اظهر المزيد [+] اقل [-]ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water
2021
Karuppasamy, K. | Rabani, Iqra | Vikraman, Dhanasekaran | Bathula, Chinna | Theerthagiri, J. | Bose, Ranjith | Yim, Chang-Joo | Kathalingam, A. | Seo, Young-Soo | Kim, Hyun-Seok
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh–B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh–B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh–B.
اظهر المزيد [+] اقل [-]Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges
2021
Su, Guangcan | Ong, Hwai Chyuan | Ibrahim, Shaliza | Fattah, I. M Rizwanul | Mofijur, M. | Chong, Cheng Tung
The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.
اظهر المزيد [+] اقل [-]Environmental impact of amino acids on selenate-bearing hydrocalumite: Experimental and DFT studies
2021
Wang, Mengmeng | Akamatsu, Hirofumi | Dabo, Ismaila | Sasaki, Keiko
Selenium (Se) radioactive wastes can be disposed through stabilization/solidification (S/S) based on the cementitious matrix on hydration products, where hydrocalumite (Ca₂Al-LDH) is expected to play an important role in the retention of SeO₄²⁻. Natural organic matters (NOMs) are known to be a risk to affect the transportation and mobility of undesirable chemical species in the pedosphere which receives the low level radioactive wastes (LLW). In the present work, five amino acids were selected as the simplified models of NOMs in the pedosphere to explore their effects on the stability of Ca₂Al-LDH after immobilized SeO₄²⁻ under alkaline conditions. As the loading amount of amino acids on Ca₂Al-LDH increasing, release of SeO₄²⁻ was enhanced in HGly, H₂Asp, and H₂Cys series, while no enhancement was observed in HPhe and HTrp series. Density functional theory (DFT) calculation predicted ion-exchange of amino acids and CO₃²⁻ with SeO₄²⁻ in a unit cell of LDH model. The intercalation of Asp²⁻ and CO₃²⁻ caused 003 peaks in XRD sharper and d₀₀₃ decreased from 8.15 Å to 7.70 Å which is assigned to Ca₂Al-LDH(Asp, CO₃). In H₂Cys series, the 003 peaks were kept broad and SeO₄²⁻ was still relatively maintained in LDH which was caused by the lower amounts of intercalated CO₃²⁻ in the presence of H₂Cys. Amino acids in the interlayer of Ca₂Al-LDH have several possible configurations, where the most stable one is prone to be in a horizontal direction through hydrogen bonds and Ca–O chemical bonds. This provides an insight on the stability of selenate immobilized in hydrocalumite, which can be produced in cement disposing in the pedosphere for a long term of burying. Not only carbonate but also small molecular organic matters like amino acids possibly give environmental impact on the mobility of low level anionic radionuclides in LDH.
اظهر المزيد [+] اقل [-]Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals
2021
Dorokhov, V.V. | Kuznetsov, G.V. | Nyashina, G.S. | Strizhak, P.A.
This paper presents the results of experimental research into the component composition of gases and ash residue from the combustion of a set of high-potential coal-water slurries containing petrochemicals. We have established that the use of slurry fuels provides a decrease in the CO₂, CH₄, SO₂, and NOₓ concentrations as compared to those from coal combustion. The content of carbon monoxide and hydrogen in the gas environment from the combustion of slurries is higher due to the intense water evaporation. It is shown that adding biomass allows a further 5–33% reduction in the emissions of nitrogen and sulfur oxides as compared to the coal-water slurry and the composition with added waste turbine oil and a 23–68% decrease as compared to coal (per unit mass of the fuel burnt). The mechanisms and stages of CO₂, SO₂, and NOₓ formation are explained with a view to controlling gaseous anthropogenic emissions and ash buildup. The values of the relative environmental performance indicator are calculated for slurry fuels. It is shown to exceed the same indicator of bituminous coal by 28–56%.
اظهر المزيد [+] اقل [-]Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design
2021
Okolie, Jude A. | Nanda, Sonil | Dalai, Ajay K. | Kozinski, Janusz A.
Forest fires significantly affect the wildlife, vegetation, composition and structure of the forests. This study explores the potential of partially burnt wood recovered in the aftermath of a recent Canadian forest fire incident as a feedstock for generating hydrogen-rich syngas through hydrothermal gasification. Partially burnt wood was gasified in hydrothermal conditions to study the influence of process temperature (300–500 °C), residence time (15–45 min), feed concentration (10–20 wt%) and biomass particle size (0.13 mm and 0.8 mm) using the statistical Taguchi method. Maximum hydrogen yield and total gas yield of 5.26 mmol/g and 11.88 mmol/g, respectively were obtained under optimized process conditions at 500 °C in 45 min with 10 wt% feed concentration using biomass particle size of 0.13 mm. The results from the mean of hydrogen yield show that the contribution of each experimental factors was in the order of temperature > feed concentration > residence time > biomass particle size. Other gaseous products obtained at optimum conditions include CO₂ (3.43 mmol/g), CH₄ (3.13 mmol/g) and C₂–C₄ hydrocarbons (0.06 mmol/g).
اظهر المزيد [+] اقل [-]