خيارات البحث
النتائج 1 - 10 من 531
Assessment of water quality in Halda River (the Major carp breeding ground) of Bangladesh
2017
Bhuyan, Md. Simul | Bakar, Muhammad
The present study has been conducted to assess the surface water quality of Halda River from September 2015 to March 2016. DO, BOD5, COD, pH, EC, Chloride, Alkalinity, and Hardness concentrations in water samples have been found to range within 0.93-5.15 mg/L, 30-545 mg/L, 43-983 mg/L, 6.3-7.3, 110-524 uS/cm, 12-56 mg/L, 35-67 mg/L, and 38-121 mg/L, respectively. Multivariate statistical analyses, such as Principal Component Analysis (PCA) as well as Correlation Matrix (CM) have revealed significant anthropogenic pollutant intrusions in water. Cluster Analysis (CA) has indicated decent results of rendering three different groups of resemblance between the two sampling sites, reflecting the different water quality indicators of the river system. A very strong positive linear relation has been found between COD and BOD (1.000), hardness and EC (0.993), pH and DO (0.979), hardness and COD (0.929), hardness and BOD (0.924), EC and COD (0.922), and EC and BOD (0.916) at a significance level of 0.01, proving their common origin entirely from industrial effluents, municipal wastes, and agricultural activities. River Pollution Index (RPI) has indicated that the water from rivers at Kalurghat and Modhunaghat varied from low to high pollution, which is due to the former area's being mostly industrial zone with some domestic sewage, while the latter underwent less industrial activities. On the contrary, lots of agricultural activities have been found in Modhunaghat. Use of river water can pose serious problems to human health and aquatic ecosystem via biological food chain. The present research suggests special preference for proper management of the river with eco-friendly automation along with development of the country's sustainable economic.
اظهر المزيد [+] اقل [-]Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China
2022
Fang, Ding | Wang, Hui | Liang, Yangyang | Cui, Kai | Yang, Kun | Lu, Wenxuan | Li, Jing | Zhao, Xiuxia | Gao, Na | Yu, Qizhi | Li, Hui | Jiang, He
The Nanfei River was one of dominant inflowing rivers of the fifth largest freshwater Chaohu Lake in China, which had been subjected to increasing nutrients and contaminants from population expansion, rapid industrialization and agricultural intensification in recent decades. In present study, surface sediment from the Nanfei River was collected to investigate the anthropogenic impact on distribution and bioavailability of heavy metals. Possible Cd sources along the river were constrained by using Cd isotope signatures and labile concentrations of heavy metals in sediment were determined through the DGT technique for risk assessment. Results showed that Cd in river sediment showed greatest enrichment (EF 0.8–9.4), indicating massive pollution from anthropogenic activities. Among the various possible Cd source materials, urban road dust, industrial soil and chicken manure, displayed higher Cd abundance and enrichment that might contribute to Cd accumulation in river sediment. Cadmium isotopic composition in river sediment was ranged from −0.21 ± 0.01‰ to 0.13 ± 0.03‰, whereas yielded relative variation from −0.31 ± 0.02‰ to 0.23 ± 0.01‰ in source materials. Accordingly, Cd sources along the river were constrained, i.e. traffic and industrial activities in the upper and middle reaches whereas agricultural activities in the lower reaches. Furthermore, the evaluation on ecological risk of heavy metals in sediment on basis of SQGs and DGT-labile concentrations demonstrated that Pb and Zn might pose higher risk on aquatic species. The present study confirmed that Cd isotopes were promising source tracer in environmental studies.
اظهر المزيد [+] اقل [-]Assessing the chemical anthropocene – Development of the legacy pollution fingerprint in the North Sea during the last century
2022
Logemann, A. | Reininghaus, M. | Schmidt, M. | Ebeling, A. | Zimmermann, T. | Wolschke, H. | Friedrich, J. | Brockmeyer, B. | Pröfrock, D. | Witt, G.
The North Sea and its coastal zones are heavily impacted by anthropogenic activities, which has resulted in significant chemical pollution ever since the beginning of the industrialization in Europe during the 19th century. In order to assess the chemical Anthropocene, natural archives, such as sediment cores, can serve as a valuable data source to reconstruct historical emission trends and to verify the effectiveness of changing environmental legislation. In this study, we investigated 90 contaminants covering inorganic and organic pollutant groups analyzed in a set of sediment cores taken in the North Seas' main sedimentation area (Skagerrak). We thereby develop a chemical pollution fingerprint that records the constant input of pollutants over time and illustrates their continued great relevance for the present. Additionally, samples were radiometrically dated and PAH and PCB levels in porewater were determined using equilibrium passive sampling. Furthermore, we elucidated the origin of lead (Pb) contamination utilizing non-traditional stable isotopic analysis. Our results reveal three main findings: 1. for all organic contaminant groups covered (PAHs, OCPs, PCBs, PBDEs and PFASs) as well as the elements lead (Pb) and titanium (Ti), determined concentrations decreased towards more recent deposited sediment. These decreasing trends could be linked to the time of introductions of restrictions and bans and therefor our results confirm, amongst possible other factors, the effectiveness of environmental legislation by revealing a successive change in contamination levels over the decades. 2. concentration trends for ΣPAH and ΣPCB measured in porewater correspond well with the ones found in sediment which suggests that this method can be a useful expansion to traditional bulk sediment analysis to determine the biologically available pollutant fraction. 3. Arsenic (As) concentrations were higher in younger sediment layers, potentially caused by emissions of corroded warfare material disposed in the study area after WW II.
اظهر المزيد [+] اقل [-]Comparative study of organic contaminants in agricultural soils at the archipelagos of the Macaronesia
2022
Acosta-Dacal, Andrea | Hernández-Marrero, María Eugenia | Rial-Berriel, Cristian | Díaz-Díaz, Ricardo | Del Mar Bernal Suarez, Maria | Zumbado, Manuel | Henríquez-Hernández, Luis Alberto | Boada, Luis D. | Luzardo, Octavio P.
The occurrence of organic pollutants in soil is a major environmental concern. These compounds can reach the soil in different ways. Point sources, related to pesticides that are used intentionally, can be applied directly to the soil, or reach the soil indirectly due to application to the aerial parts of crops. On the other hand, non-point sources, which reach soils collaterally during irrigation and/or fertilization, or due to the proximity of plots to industrialized urban centers. Long-range transport of global organic pollutants must also be taken into account. In this study, 218 pesticides, 49 persistent organic pollutants, 37 pharmaceutical active compounds and 6 anticoagulant rodenticides were analyzed in 139 agricultural soil samples collected between 2018 and 2020 in the Macaronesia. This region comprised four inhabited archipelagos (Azores, Canary Islands, Cape Verde, and Madeira) for which agriculture is an important and traditional economic activity. To our knowledge, this is the first study on the levels of organic compound contamination of agricultural soils of the Macaronesia. As expected, the most frequently detected compounds were pesticides, mainly fungicides and insecticides. The Canary Islands presented the highest number of residues, with particularly high concentrations of DDT metabolites (p,p’ DDE: 149.5 ± 473.4 ng g⁻¹; p,p’ DDD: 16.6 ± 35.6 ng g⁻¹) and of the recently used pesticide fenbutatin oxide (302.1 ± 589.7 ng g⁻¹). Cape Verde was the archipelago with the least contaminated soils. Very few pharmaceutical active compounds have been detected in all archipelagos (eprinomectin, fenbendazole, oxfendazole and sulfadiazine). These results highlight the need to promote soil monitoring programs and to establish maximum residue limits in soils, which currently do not exist at either continental or local level.
اظهر المزيد [+] اقل [-]The inhibition effect of bank credits on PM2.5 concentrations: Spatial evidence from high-polluting firms in China
2022
Yang, Fuyong | Xu, Qingsong | Li, Kunming | Yuen, Kum Fai | Shi, Wenming
Particulate Matter (PM₂.₅) pollution in China has been a primary concern for public health in recent years, which requires banks to appropriately control their credit supply to industries with high pollution, high energy consumption, and surplus capacity. For this reason, this paper examines economic determinants of PM₂.₅ concentrations and incorporates the spatial spillover effect of bank credit by employing the spatial Durbin model (SDM) under the stochastic impacts by regression on population, affluence and technology framework. Using China's provincial dataset from 1998 to 2016, the main findings are as follows: First, there is evidence in support of spatial dependence of PM₂.₅ concentrations and their inverted U-shaped relationship with economic growth in China. Second, PM₂.₅ concentrations in a province tend to increase as the level of its own urbanization increases, but they decrease as its own human capital and bank credit increase. Meanwhile, the level of neighboring urbanization positively influences a province's PM₂.₅ concentrations, whereas neighboring population size, industrialization, trade openness, and bank credit present negative impacts. Third, indirect effects of the SDM indicate significant and negative spatial spillover effect of bank credit on PM₂.₅ concentrations. These findings implicate policies on reforming economic growth, urbanization, human capital and bank credit to tackle PM₂.₅ pollution in China from a cross-provincial collaboration perspective.
اظهر المزيد [+] اقل [-]Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings
2022
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb²⁺ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 μg g⁻¹, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb²⁺ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb²⁺, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb²⁺. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O₂⁻ and H₂O₂, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.
اظهر المزيد [+] اقل [-]A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils
2021
Yang, Shiyan | Taylor, David | Yang, Dong | He, Mingjiang | Liu, Xingmei | Xu, Jianming
Source apportionment can be an effective tool in mitigating soil pollution but its efficacy is often limited by a lack of information on the factors that influence the accumulation of pollutants at a site. In response to this limitation and focusing on a suite of heavy metals identified as priorities for pollution control, the study established a comprehensive pollution control framework using factor identification coupled with spatial agglomeration for agricultural soils in an industrialized part of Zhejiang Province, China. In addition to elucidating the key role of industrial and traffic activities on heavy metal accumulation through implementing a receptor model, specific influencing factors were identified using a random forest model. The distance from the soil sample location to the nearest likely industrial source was the most important factor in determining cadmium and copper concentrations, while distance to the nearest road was more important for lead and zinc pollution. Soil parent materials, pH, organic matter, and clay particle size were the key factors influencing accumulation of arsenic, chromium, and nickel. Spatial auto-correlation between levels of soil metal pollution and industrial agglomeration can enable a more targeted approach to pollution control measures. Overall, the approach and results provide a basis for improved accuracy in source apportionment, and thus improved soil pollution control, at the regional scale.
اظهر المزيد [+] اقل [-]Spatiotemporal variations and determinants of water pollutant discharge in the Yangtze River Economic Belt, China: A spatial econometric analysis
2021
Zhou, Gan | Wu, Jianxiong | Liu, Hanchu
Water pollution is an urgent problem that needs to be controlled via green transformation and the development of the Yangtze River Economic Belt (YREB). Based on the water pollutant discharge and socio-economic database of prefecture-level cities in the YREB from 2011 to 2015, this study explores the spatiotemporal variations in water pollutant discharge in the YREB via two main indicators: chemical oxygen demand (COD) and ammonia nitrogen (NH₃–N). Further, the spatial effects and determinants of water pollutant discharge are quantitatively estimated. The results show that (1) the water pollutant discharge in the YREB has decreased significantly, with the COD and NH₃–N discharge reduced by 10.46% and 10.79%, respectively, and the discharge reduction in the lower reaches was the most prominent; (2) the spatial pattern of water pollutant discharge in the YREB was generally stable and partially improved, and cities with a high rate of water pollutant reduction in the YREB were distributed in the main stream region of the Yangtze River and the intersection of the main stream and tributaries; (3) spatial effects had a significant impact on water pollutant discharge in the YREB, with regional cooperation and economic radiation through environmental management and control initially showing a combined reduction trend in regional water pollutants; and (4) determinants of population size and agricultural economic share declined to varying degrees at the end of the study period, although the urbanization level continued to increase, indicating that urbanization in the YREB occurred too quickly and that water pollutant discharge reduction was limited. However, economic development leading to the deterioration of the water environment was alleviated. In addition, foreign direct investment (FDI) inflows and rapid industrialization processes must be monitored to increase the reduction in characteristic water pollutants.
اظهر المزيد [+] اقل [-]Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales
2021
Miranda, Chelsea D. | Crippen, Tawni L. | Cammack, Jonathan A. | Tomberlin, Jeffery K.
The industrial production of insects for waste management or as a protein source is becoming vital to our society. Large volumes of manure are produced by concentrated animal facilities around the globe that must be managed, utilized, and disposed of properly. Flies offer a partial solution with their abilities to reduce these wastes and heavy metal pollutants. Meat and crop proteins are being supplemented by insect proteins for many feeds across the globe, yet science-based studies behind the mass-rearing of insects are still in their infancy. In the current study, the percent change in the composition of nutrients, heavy metals, and fiber, in dairy, poultry, and swine manure degraded by either black soldier fly (BSF) or house fly (HF) larvae was explored. Pre-digested and post-digested manure samples were collected from four independent studies that differed in production scale (number of larvae and feeding regimen): 1) BSF small-scale (100 larvae fed incrementally), 2) HF small-scale (100 larvae fed incrementally), 3) BSF large-scale (10,000 larvae fed a single time), and 4) HF large-scale (4,000 larvae fed a single time). Results indicate that nitrogen is a key nutrient impacted by larval digestion of manure by both species, regardless of scale. However, scale significantly impacted reductions of other nutrients, as did the type of manure in which the insects were reared. Ultimately, this study demonstrated that manure type and rearing scale impact the ability of BSF and HF larvae to reduce nutrients and heavy metals in manure, and thus insect management procedures need to be congruent with production emphases of the insects for waste management or protein products. Failure to take scale into consideration could lead to inaccurate assumptions related to industrialized efforts on this topic.
اظهر المزيد [+] اقل [-]Monitoring urban black-odorous water by using hyperspectral data and machine learning
2021
Sarigai, | Yang, Ji | Zhou, Alicia | Han, Liusheng | Li, Yong | Xie, Yichun
Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.
اظهر المزيد [+] اقل [-]