خيارات البحث
النتائج 1 - 10 من 18
Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances النص الكامل
2022
Luo, Zhili | Yu, Zhenyang | Yin, Daqiang
Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.
اظهر المزيد [+] اقل [-]Chronic exposure to environmentally relevant levels of di(2-ethylhexyl) phthalate (DEHP) disrupts lipid metabolism associated with SBP-1/SREBP and ER stress in C. elegans النص الكامل
2022
How, Chun Ming | Hsiu-Chuan Liao, Vivian
DEHP is commonly found in the environment, biota, food, and humans, raising significant health concerns. Whether developmental stage and exposure duration modify the obesogenic effects of DEHP is unclear, especially the underlying mechanisms by which chronic exposure to DEHP as well as its metabolites remain largely unknown. This study investigated the obesogenic effects of chronic DEHP exposure, with levels below environmentally-relevant amounts and provide the mechanism in Caenorhabditis elegans. We show that early-life DEHP exposure resulted in an increased lipid and triglyceride (TG) accumulation mainly attributed to DEHP itself, not its metabolite mono-2-ethylhexyl phthalate (MEHP). In addition, developmental stage and exposure timing influence DEHP-induced TG accumulation and chronic DEHP exposure resulted in the most significant effect. Analysis of fatty acid composition shows that chronic DEHP exposure altered fatty acid composition and TG, resulting in an increased ω-6/ω-3 ratio. The increased TG content by chronic DEHP exposure required lipogenic genes fat-6, fat-7, pod-2, fasn-1, and sbp-1. Moreover, chronic DEHP exposure induced XBP-1-mediated endoplasmic reticulum (ER) stress which might lead to up-regulation of sbp-1. This study suggests the possible involvement of ER stress and SBP-1/SREBP-mediated lipogenesis in chronic DEHP-induced obesogenic effects. Results from this study implies that chronic exposure to DEHP disrupts lipid metabolism, which is likely conserved across species due to evolutionary conservation of molecular mechanisms, raising concerns in ecological and human health.
اظهر المزيد [+] اقل [-]Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella النص الكامل
2021
Xu, Yi-Huan | Hogstrand, Christer | Xu, Yi-Chuang | Zhao, Tao | Zheng, Hua | Luo, Zhi
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
اظهر المزيد [+] اقل [-]Multigenerational study of the obesogen effects of bisphenol S after a perinatal exposure in C57BL6/J mice fed a high fat diet النص الكامل
2021
Brulport, Axelle | Le Corre, Ludovic | Maquart, Guillaume | Barbet, Virginie | Dastugue, Aurélie | Severin, Isabelle | Vaiman, Daniel | Chagnon, Marie-Christine
Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue.We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice.Pregnant C57BL6/J mice were exposed to BPS (1.5 μg/kg bw/day ie a human equivalent dose of 0.12 μg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed.In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females.BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.
اظهر المزيد [+] اقل [-]Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches النص الكامل
2019
Batra, Twinkle | Malik, Indu | Kumar, Vinod
Light at night (LAN) negatively impacts the behaviour and physiology; however, very little is known about molecular correlates of LAN-induced effects in diurnal animals. Here, we assessed LAN-induced effects on behaviour and physiology, and examined molecular changes in the liver of diurnal zebra finches (Taeniopygia guttata). Birds were exposed to dim LAN (dLAN: 12L = 150 lux: 12D = 5 lux), with controls on 12L (150 lux): 12D (0 lux). dLAN altered daily activity-rest and eating patterns, induced nocturnal eating and caused body fattening and weight gain, and reduced nocturnal melatonin levels. Concomitant increased nighttime glucose levels, decreased daytime thyroxine and triglycerides levels, and hepatic lipid accumulation suggested the impairment of metabolism under dLAN. Transcriptional assays evidenced dLAN-induced negative effects on metabolism in the liver, the site of metabolic homeostasis. Particularly, increased g6pc and foxo1 mRNA expressions suggested an enhanced gluconeogenesis, while increased egr1 and star expressions suggested enhanced cholesterol biosynthesis and lipid metabolism, respectively. Similarly, overexpressed sirt1 indicated protection from the metabolic damage due to elevated gluconeogenesis and cholesterol biosynthesis under dLAN. However, no effect on genes involved in lipogenesis (fasn) and insulin signalling pathway (socs3 and insig1) might indicate for the post transcriptional/post translational modification effects or the involvement of other genetic pathways in LAN-induced effects. We also found daily rhythm in the hepatic expression of selected clock and clock-controlled genes (per2, bmal1 and reverb-beta), with an elevated mesor and amplitude of per2 oscillation, suggesting a role of per2 in the liver metabolism. These results demonstrate dLAN-induced negative effects on the behaviour and physiology, and provide molecular insights into metabolic risks of the exposure to illuminated nights to diurnal animals including humans in an urban setting.
اظهر المزيد [+] اقل [-]Early-life exposure to bisphenol A induces dysregulation of lipid homeostasis by the upregulation of SCD1 in male mice النص الكامل
2022
Fang, Ruyue | Yang, Shaohua | Gu, Xiaozhen | Li, Changqing | Bi, Nanxi | Wang, Hui-Li
Exposure of Bisphenol A (BPA) is closely associated with an increased prevalence of obesity-related metabolic syndrome. However, the potential mechanism of BPA-induced adipogenesis remains to be fully elucidated. Herein, potential mechanisms of BPA-induced adipogenesis in 3T3-L1 preadipocytes were evaluated using RNA-Seq. Then, using an early-life BPA exposure model, we further evaluated the effects of BPA exposure on lipid and glucose homeostasis. The results showed that lipid content in 3T3-L1 adipocytes was significantly increased after BPA exposure (p < 0.01) and male C57BL/6 mice with the dose of 500 μg/kg/day BPA by once-a-day oral administration for 8 weeks displayed a NAFLD-like phenotype. RNA-Seq analysis of preadipocytes showed that BPA exposure affected multiple biological processes including glycosphingolipid biosynthesis, regulation of lipolysis in adipocytes, PPAR signaling pathway and fatty acid metabolism. The dysregulation in a series of genes of mice was associated to de novo lipogenesis and lipid transport, which was linked to obesity. Importantly, we also found a significant expression increase of stearoyl-CoA desaturase 1 (SCD1) and a significant decrease of apolipoprotein D (APOD) in both fat (p < 0.01) and livers (p < 0.01) of male mice. Besides, the dysregulation of pro-inflammatory genes (TNF-α,IL-6 and SAA3) showed that BPA exposure promoted progression of hepatic inflammation. In conclusion, this study elucidated a novel mechanism in which obesity associated with BPA exposure by targeting SCD1. Exposure to BPA should be carefully examined in the chronic liver metabolic diseases.
اظهر المزيد [+] اقل [-]4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro النص الكامل
2021
Sun, Zhendong | Cao, Huiming | Liu, Qian S. | Liang, Yong | Fiedler, H. (Heidelore) | Zhang, Jianqing | Zhou, Qunfang | Jiang, Guibin
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
اظهر المزيد [+] اقل [-]Tributyltin triggers lipogenesis in macrophages via modifying PPARγ pathway النص الكامل
2021
Jie, Jiapeng | Ling, Ling | Yi, Yuguo | Tao, Liang | Liao, Xin | Gao, Pingshi | Xu, Qian | Zhang, Weigao | Chen, Yuxin | Zhang, Jianfa | Weng, Dan
Tributyltin (TBT), a bioaccumulative and persistent environmental pollutant, has been proposed as a metabolism disruptor and obesogen through targeting peroxisome proliferator-activated receptor gamma (PPARγ) receptor pathway. However, it remains unknown whether this biological effect occurs in macrophage, a cell type which cooperates closely with hepatocytes and adipocytes to regulate lipid metabolism. This study for the first time investigated the effect of TBT on PPARγ pathway in macrophages. Our results indicated that nanomolar levels of TBT was able to strongly activate PPARγ in human macrophages. TBT treatment also markedly increased the intracellular lipid accumulation, and enhanced the expression of lipid metabolism-related genes in macrophages, while these effects were all significantly down-regulated in PPARγ-deficient macrophages, confirming the involvement of PPARγ in TBT-induced lipogenesis. Next, a mouse model that C57BL/6 mice were orally exposed to TBT with the doses (250 and 500 μg/kg body weight) lower than NOAEL (no observed adverse effect level) was used to further investigate the in vivo mechanisms. And the in vivo results were consistent with cellular assays, confirming the induction of PPARγ and the increased expression of lipogenesis-regulating and lipid metabolism-related genes by TBT in vivo. In conclusion, this study not only provided the first evidence that TBT stimulated lipogenesis, activated PPARγ and related genes in human macrophages, but also provided insight into the mechanism of TBT-induced metabolism disturbance and obesity through targeting PPARγ via both in vitro cellular assays and in vivo animal models.
اظهر المزيد [+] اقل [-]Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella النص الكامل
2020
Xu, Yi-Chuang | Xu, Yi-Huan | Zhao, Tao | Wu, Li-Xiang | Yang, Shui-Bo | Luo, Zhi
Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/β-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced β-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the β-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/β-catenin pathway; Cu regulated the β-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated β-catenin and played an essential role in nuclear accumulation of β-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/β-catenin pathway and β-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.
اظهر المزيد [+] اقل [-]Autophagy mediates perfluorooctanoic acid-induced lipid metabolism disorder and NLRP3 inflammasome activation in hepatocytes النص الكامل
2020
Weng, Zhenkun | Xu, Cheng | Zhang, Xin | Pang, Lu | Xu, Jin | Liu, Qian | Zhang, Liye | Xu, Shuqin | Gu, Aihua
Perfluorooctanoic acid (PFOA) has applications in numerous industrial products and is an industrial waste that is persistently present in the environment. Exposure to PFOA results in nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain unclear. In this study, male C57BL/6 mice were exposed to PFOA (1 mg/kg/day) for 4 weeks to evaluate the effect of PFOA, and the human liver cell line (L-02) was used to observe the direct effect of PFOA in vitro. After PFOA exposure, the expression of genes related to hepatic lipogenesis, the NLRP3 inflammasome, and autophagy were measured. We found that exposure to PFOA induced lipid accumulation and stimulated lipogenesis in both mouse livers and L-02 cells. In addition, increased NLRP3 aggregation and enhanced production of IL-1β occurred after PFOA treatment. We also found that PFOA exposure induced autophagosome formation and p62 accumulation, indicating blockage of autophagic flux. Rapamycin alleviated PFOA-induced lipid accumulation and NLRP3 inflammasome activation by activating autophagic flux. Conversely, chloroquine, an autophagic flux inhibitor, exacerbated PFOA-induced lipid accumulation and NLRP3 inflammasome activation. Collectively, these results provide evidence to show that PFOA-induced blockade of autophagic flux causes an increase in lipid synthesis and inflammation in vivo and in vitro.
اظهر المزيد [+] اقل [-]