خيارات البحث
النتائج 1 - 10 من 16
Single and competitive sorption of sulfadiazine and chlortetracycline on loess soil from Northwest China☆
2020
Jiang, Yufeng | Zhang, Qian | Deng, Xueru | Nan, Zhijiang | Liang, Xinru | Wen, Hong | Huang, Kui | Wu, Yingqin
The fate of veterinary antibiotics (VAs) in soil environment is determined by the hydrophilic performance and solubility of VAs and the type of soil. In this study, sulfadiazine (SDZ) and chlortetracycline (CTC) were selected as target pollutants, and a batch sorption method was used to find out the single and sorption competitive behavior and mechanism of the target pollutants on loess soil. Kinetic studies showed the apparent sorption equilibrium was reached 0–6 h for CTC and 0–12 h for SDZ. The sorption kinetics of VAs on loess soil were fitted well with a pseudo-second order kinetic model. Sorption thermodynamic data indicated the isotherm sorption of both SDZ and CTC on loess soil was fitted well with Freundlich isothermal (R², 0.960–0.975) and linear models (R², 0.908–0.976). The sorption affinity of CTC (Kd, 290–1620 L/kg for CTC) was much greater than that of SDZ (Kd, 0.6–4.9 L/kg for SDZ). The results also suggest that SDZ may be easily mobilized or leached from loess soil at neutral and alkaline pH, while CTC may be easily mobilized or leached at neutral pH. The sorption of each single target pollutant on the outer layer complex decreased with increasing ionic strength. Higher initial concentrations resulted in greater sorption capacity of target pollutants on loess soil increased. The sorption capacities of CTC and SDZ in the mixed system were lower than the sorption capacity of each single system, showing a competitive sorption behavior of CTC and SDZ during the sorption process. Overall, CTC showed the highest sorption potential in loess soil, whereas SDZ showed a high leaching risk in loess soil. These findings contribute to understanding the fate of different VAs in loess in the natural environment.
اظهر المزيد [+] اقل [-]Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles
2019
Wang, Ting | Huo, Lijuan | Li, Yifei | Qian, Tianwei | Zhao, Dongye
In this study, reactive pyrite (FeS2) particles were prepared through a modified hydrothermal method and tested for immobilization of Cr(VI) in contaminated soil and synthetic groundwater. The addition of a NaAc buffer in the synthetic process resulted in pyrite particles of greater specific surface area, more uniform size, and more crystalline structure. The particles can effectively immobilize Cr(VI) in both water and a model Chinese loess soil. Over 99.9% of Cr(VI) was rapidly removed from water at pH 6.0 (Initial Cr(VI) = 25 mg/L, FeS2 dosage = 0.48 g/L), and the removal remained high (>82%) even at pH 9.5. Both adsorption and reductive precipitation were found operative in the Cr(VI) immobilization, with ∼66% of Cr immobilized due to reduction. Fe(II) ions associated on the FeS2 surface played a key role in the reduction of Cr(VI) to Cr(III), and S22− also facilitated the reductive removal of Cr(VI). The presence of humic acid enhanced Cr(VI) removal at pH 4.0, but the effect was negligible at pH 6.0. Batch kinetic tests showed that treating a Cr(VI)-laden soil with 0.48 g/L (as Fe) of FeS2 decreased the equilibrium water-leachable Cr(VI) by >99.0% at pH 6.0 and by >70.0% at pH 9.0. The distribution coefficient (Kd) value of the pyrite-amended soil was 1477.8 at pH 6.0, which is 306 times higher than for the untreated soil. Column elution tests showed that installation of a 3-cm reactive layer of FeS2 in a soil column was able to capture the leachable Cr(VI) from the soil, and the retardation factor (Rd) for the 3-cm FeS2 layer sample was 381 times higher than that for the plain soil. The synthetic pyrite particles may serve as an reactive material for effective removal or immobilization of Cr(VI) in contaminated water or soil.
اظهر المزيد [+] اقل [-]Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil
2017
Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural areas where it has been applied. Therefore, special attention is required to the airborne transport of glyphosate and AMPA. In this study, we investigated the behavior of glyphosate and AMPA in wind-eroded sediment by measuring their content in different size fractions (median diameters between 715 and 8 μm) of a loess soil, during a period of 28 days after glyphosate application. Granulometrical extraction was done using a wind tunnel and a Soil Fine Particle Extractor. Extractions were conducted on days 0, 3, 7, 14, 21 and 28 after glyphosate application. Results indicated that glyphosate and AMPA contents were significantly higher in the finest particle fractions (median diameters between 8 and 18 μm), and lowered significantly with the increase in particle size. However, their content remained constant when aggregates were present in the sample. Glyphosate and AMPA contents correlated positively with clay, organic matter, and silt content. The dissipation of glyphosate over time was very low, which was most probably due to the low soil moisture content of the sediment. Consequently, the formation of AMPA was also very low. The low dissipation of glyphosate in our study indicates that the risk of glyphosate transport in dry sediment to off-target areas by wind can be very high. The highest glyphosate and AMPA contents were found in the smallest soil fractions (PM10 and less), which are easily inhaled and, therefore, contribute to human exposure.
اظهر المزيد [+] اقل [-]Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil
2018
Yang, Xiaomei | Bento, Célia P.M. | Chen, Hao | Zhang, Hongming | Xue, Sha | Lwanga, Esperanza Huerta | Zomer, Paul | Ritsema, Coen J. | Geissen, Violette
The intensive use of pesticide and plastic mulches has considerably enhanced crop growth and yield. Pesticide residues and plastic debris, however, have caused serious environmental problems. This study investigated the effects of the commonly used herbicide glyphosate and micrometre-sized plastic debris, referred as microplastics, on glyphosate decay and soil microbial activities in Chinese loess soil by a microcosm experiment over 30 days incubation. Results showed that glyphosate decay was gradual and followed a single first-order decay kinetics model. In different treatments (with/without microplastic addition), glyphosate showed similar half-lives (32.8 days). The soil content of aminomethylphosphonic acid (AMPA), the main metabolite of glyphosate, steadily increased without reaching plateau and declining phases throughout the experiment. Soil microbial respiration significantly changed throughout the entirety of the experiment, particularly in the treatments with higher microplastic addition. The dynamics of soil β-glucosidase, urease and phosphatase varied, especially in the treatments with high microplastic addition. Particles that were considerably smaller than the initially added microplastic particles were observed after 30 days incubation. This result thus implied that microplastic would hardly affect glyphosate decay but smaller plastic particles accumulated in soils which potentially threaten soil quality would be further concerned especially in the regions with intensive plastic mulching application.
اظهر المزيد [+] اقل [-]Chemical profiles of urban fugitive dust over Xi'an in the south margin of the Loess Plateau, China
2014
Zhang, Qian | Shen, Zhenxing | Cao, Junji | Ho, KinFai | Zhang, Renjian | Bie, Zengjun | Chang, Hairu | Liu, Suixin
Urban fugitive dust samples were collected to determine the chemical profiles of fugitive dust over Xi'an. Seventy eight samples were collected and divided into categories of paved road dust, construction dust, cement dust, and soil dust. Eighteen elements, including Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ba, and Pb, and eight water–soluble inorganic ions, including Na+, Mg2−, Ca2−, NH4−, F−, Cl−, NO3− and SO42−, were measured. The most abundant elements in these urban dust samples were Al, Si, Ca, and Fe. Al, Si, K, and Ti and showed strong positive correlations with each other, indicating they are typical dust trace elements. In contrast, elements of Ca, Zn, As, and Pb had negative correlations to crustal elements. Si/Al, K/Al, Ti/Al, Mn/Al, and Fe/Al ratios varied insignificantly among these four samples types; these ratios are similar to the properties of loess, desert, and Gobi soil dust reported in previous studies. A significantly higher Ca/Al ratio was dominant in the chemical profile of the cement samples. In addition, high Pb/Al and Zn/Al ratios were detected in comparison with those in the Gobi soil, desert soil, and loess soil samples, which indicated that Pb/Al and Zn/Al ratios can be considered as markers of urban dust. To t a l water–soluble ions occupied only a small fraction (<5%) in the urban fugitive soil samples indicating that most of the materials in the fugitive dust were insoluble. Ca2+ and SO42− were the most abundant ions in all samples. Most of the Ca and K in the fugitive soil samples were in insoluble phases, which differ significantly in comparison with combustion sources. A strong correlation was observed between Ca2+ and estimated CO32− levels indicating that most of Ca2+ was in the form of CaCO3 rather than other calcium minerals in Xi’an fugitive dust.
اظهر المزيد [+] اقل [-]Experimental Validation of Retardation of Tritium Migration in the Chinese Loess Media
2011
Zuo, Rui | Teng, Yanguo | Wang, Jinsheng | Hu, Qinhong | Guo, Minli
Retardation of tritium migration in the Chinese loess media was studied through column experiments by comparison of the migration velocity with other three “non-adsorptive” tracers of Br−, 99Tc, and 131I. Results showed that the transport peak of Br− was 1.25 times earlier than that of tritium when the tracers were simultaneously injected into the column, and the migration of 99Tc was even 1.60 times faster than 3H when the tracers were simultaneously injected. For iodine, it was only 1.02 times faster than that of tritium, but it should not be ignored. It reflected that the transport of 3H, compared to that of Br−, 99Tc, or 131I in the loess media, was retarded. In order to validate the adsorption behavior of tritium on loess, batch tests were carried out using Chinese loess soil. The experimental results indicated that the adsorption of tritium was actual existence, and the distribution coefficient of tritium is influenced by initial activity of tritium, pH, water/solid ratio, and the content of humic and fulvic acids.
اظهر المزيد [+] اقل [-]Evaluation of N2O emission from rainfed wheat field in northwest agricultural land in China
2020
Yang, Yue | Tong, Yan’an | Gao, Pengcheng | Htun, Yin Min | Feng, Tao
The net greenhouse gas (NGHG) emissions and net greenhouse gas intensity (NGHGI) were investigated via the determination of nitrous oxide (N₂O) emission in loess soil under rainfed winter wheat monocropping system during 3 years of field study in Northwest China. Five treatments were carried out: control (N₀), conventional nitrogen (N) application (NCₒₙ), optimized N application with straw (SNOₚₜ), optimized N application with straw and 5% of dicyanodiamide (SNOₚₜ + DCD), and optimized N rate of slow release fertilizer with straw (SSRFOₚₜ). Over a 3-year period, the NGHG emissions were achieved 953, 1322, 564, and 1162 kg CO₂-eq ha⁻¹, simultaneously, and the NGHGI arrived 158, 223, 86, and 191 kg CO₂-eq t⁻¹ grain in NCₒₙ, SNOₚₜ, SNOₚₜ + DCD, and SSROₚₜ grain, respectively. Contrasted with conventional farming system, optimized farming methods reduced 32% of N fertilizer use without significant decrease in grain yield, but brought about 38% increase in N₂O emissions, up to 28% gained in soil CH₄ uptake. Thus, it was observed that the straw incorporation performs noticeable increased in N₂O emissions in the winter wheat cropping season. Among the optimized N fertilizer rates compared with the SNOₚₜ treatment, the SNOₚₜ +DCD and SSROₚₜ treatments decreased in N₂O emissions by approximately 55% and 13%, respectively. Additionally, the N₂O emission factor across over a 3-year period was 0.41 ± 0.08% derived from N fertilizer, and it was half of IPCC default values for upland corps. It is expected possibly due to low precipitation and soil moisture with the monocropping system. The 25% higher in the amount of rainfall (almost 300 mm in 2013–2014) during a cropping season underwent into 1–2-fold increase in N₂O emissions from N-fertilized plots. As the statistical differences among annual cumulative emissions coincided with that during winter wheat growing season, it can be concluded that crop growing season is a vital important period for the determination of N₂O emissions from under rainfed monocropping system.
اظهر المزيد [+] اقل [-]Evaluation of the Impacts of Marine Salts and Asian Dust on the Forested Yakushima Island Ecosystem, a World Natural Heritage Site in Japan
2012
Nakano, Takanori | Yokoo, Yoriko | Okumura, Masao | Jean, Seo-Ryong | Satake, Kenichi
To elucidate the influence of airborne materials on the ecosystem of Japan’s Yakushima Island, we determined the elemental compositions and Sr and Nd isotope ratios in streamwater, soils, vegetation, and rocks. Streamwater had high Na and Cl contents, low Ca and HCO₃ contents, and Na/Cl and Mg/Cl ratios close to those of seawater, but it had low pH (5.4 to 7.1), a higher Ca/Cl ratio than seawater, and distinct ⁸⁷Sr/⁸⁶Sr ratios that depended on the bedrock type. The proportions of rain-derived cations in streamwater, estimated by assuming that Cl was derived from sea salt aerosols, averaged 81 % for Na, 83 % for Mg, 36 % for K, 32 % for Ca, and 33 % for Sr. The Sr value was comparable to the 28 % estimated by comparing Sr isotope ratios between rain and granite bedrock. The soils are depleted in Ca, Na, P, and Sr compared with the parent materials. At Yotsuse in the northwestern side, plants and the soil pool have ⁸⁷Sr/⁸⁶Sr ratios similar to that of rainwater with a high sea salt component. In contrast, the Sr and Nd isotope ratios of soil minerals in the A and B horizons approach those of silicate minerals in northern China’s loess soils. The soil Ca and P depletion results largely from chemical weathering of plagioclase and of small amounts of apatite and calcite in granitic rocks. This suggests that Yakushima’s ecosystem is affected by large amounts of acidic precipitation with a high sea salt component, which leaches Ca and its proxy (Sr) from bedrock into streams, and by Asian dust-derived apatite, which is an important source of P in base cation-depleted soils.
اظهر المزيد [+] اقل [-]Soil acidification in loess and clay soils in the Netherlands
2000
Salm, C. van der | Vries, W. de
[Effect of surface liming in doses suitable for melioration on the pH-value and cation exchange of an acid brown soil on loess]
1989
Meiwes, K.J. (Niedersaechsische Forstliche Versuchsanstalt, Goettingen (Germany, F.R.)) | Beese, F.