خيارات البحث
النتائج 1 - 10 من 41
Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis النص الكامل
2022
Chen, Dan | Zhao, Xingyi | Huang, Fu | Guan, Xiaoju | Tian, Jing | Ji, Minpeng | Wen, Xin | Shao, Jingjing | Xie, Jiajia | Wang, Jiexia | Chen, Haolin
Bisphenol A (BPA) is widely used by manufacturers and in consumer products. Its release in the environment may affect male reproductive function. In this study, we examined the effect of low dose (0.1 mg/kg BW), short term exposure during puberty (PD21-35) on adult rat male reproduction. The results indicated that such exposure reset growth hormone (GH) and follicular stimulating hormone (FSH) homeostasis and resulted in a significantly higher level of serum testosterone without affecting serum luteinizing hormone level. QPCR and Western blot results showed that BPA significantly up-regulated selective genes/proteins in the Leydig cell steroidogenic pathway, including steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A, and low-density lipoprotein receptor. RNA-Seq analysis of testicular RNAs showed that BPA significantly affected the gene profiles of multiple testicular interstitial populations without affecting germ cells. Also, GO- and KEGG-analysis suggested that IGF1-related PI3K/AKT signaling was activated, which was confirmed by the increased phosphorylation of IRS1, AKT1 and CREB. The results indicated that a low-dose, short-term BPA exposure during puberty affected the adult male rat pituitary (GH and FSH) and testis (testosterone) homeostasis.
اظهر المزيد [+] اقل [-]Perfluorooctane sulfonate exposure alters sexual behaviors and transcriptions of genes in hypothalamic–pituitary–gonadal–liver axis of male zebrafish (Danio rerio) النص الكامل
2020
Bao, Mian | Zheng, Shukai | Liu, Caixia | Huang, Wenlong | Xiao, Jiefeng | Wu, Kusheng
Perfluorooctane sulfonate (PFOS) has been reported to be widely distributed in the environment and wildlife with persistence. PFOS has various biological toxicity, especially disturbing the endocrine system. However, few studies have systematically evaluated its effect on sexual behaviors alteration and reproduction-related genes. This study was performed to assess the effect of PFOS exposure on sexual behaviors and genes in hypothalamic–pituitary–gonadal–liver (HPGL) axis in adult zebrafish.Male adult zebrafish were exposed to PFOS (0, 2, 20, and 200 μg/L) and 5 μg/L estradiol (E₂) continuously for 21 days. Sexual behaviors were analyzed by zebrafish behavior tracking system and the mRNA levels of HPGL-related genes was detected by RT-qPCR.Body weight of the fish was increased in 2, 200 μg/L PFOS and E₂ groups, and body length was increased with exposure to 2 μg/L PFOS and E₂. The hepatic-somatic index was decreased significantly after 2 and 20 μg/L PFOS treatments. Highest PFOS (200 μg/L) and E₂ exposure impaired standard zebrafish sexual behaviors significantly such as chasing, nose-tail and tail-touching. In brains, the genes gonadotropin-releasing hormone (GnRH), gonadotropin-releasing hormone receptor (GnRHr) were down-regulated with exposure to PFOS with linear trend and E₂ exposure, and follicle-stimulating hormone and luteinizing hormone were also down-regulated with exposure to 20 and 200 μg/L PFOS. In livers, the genes vitellogenin 1 and 3 were upregulated with some concentrations of PFOS and E₂, but estrogenic receptor α, β2 were upregulated in any concentration of PFOS and E₂. In testes, the expressions of follicle-stimulating hormone receptor, luteinizing hormone receptor, and androgen receptor genes were all significantly down-regulated with any exposure concentration of PFOS and E₂.PFOS may alter the zebrafish reproductive system by disrupting endocrine activity and impairing sexual behaviors.
اظهر المزيد [+] اقل [-]Lambda-cyhalothrin delays pubertal Leydig cell development in rats النص الكامل
2018
Li, Huitao | Fang, Yinghui | Ni, Chaobo | Chen, Xiuxiu | Mo, Jiaying | Lv, Yao | Chen, Yong | Chen, Xianwu | Lian, Qingquan | Ge, Ren-Shan
Lambda-cyhalothrin (LCT) is a widely used broad-spectrum pyrethroid insecticide and is expected to cause deleterious effects on the male reproductive system. However, the effects of LCT on Leydig cell development during puberty are unclear. The current study addressed these effects. Twenty-eight-day-old male Sprague Dawley rats orally received LCT (0, 0.25, 0.5 or 1 mg/kg body weight/day) for 30 days. The levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone, Leydig cell number, and its specific gene and protein expression were determined. LCT exposure lowered serum testosterone levels at doses of 0.5 and 1 mg/kg and luteinizing hormone levels at a dose of 1 mg/kg, but increased follicle-stimulating hormone levels at doses of 0.5 and 1 mg/kg. LCT lowered Star and Hsd3b1 mRNA or their protein levels at a dose of 1 mg/kg. Immature Leydig cells were purified from pubertal rats and treated with different concentrations of LCT for 24 h and medium androgen levels, Leydig cell mRNA and protein levels, the mitochondrial membrane potential (△Ψm), and the apoptotic rate of immature Leydig cells were investigated. LCT inhibited androgen production at 5 μM and downregulated Scarb1 at 0.05 μM, Hsd3b1 and Hsd11b1 at 0.5 μM, and Cyp11a1 at 5 μM. LCT also decreased △Ψm at 0.5 and 50 μM. In conclusion, LCT can influence the function of Leydig cells.
اظهر المزيد [+] اقل [-]Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish النص الكامل
2018
Ren, Xin | Zhao, Xuesong | Duan, Xiaoyue | Fang, Ziwei
Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO₂) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 μg L⁻¹ TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L⁻¹ nano-TiO₂ for 21 days. Nano-TiO₂ can absorb TDCIPP and nano-TiO₂ is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO₂ adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO₂ resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO₂ is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes.
اظهر المزيد [+] اقل [-]Intensity dependent disruptive effects of light at night on activation of the HPG axis of tree sparrows (Passer montanus) النص الكامل
2019
Zhang, Xinjie | Yang, Wenyu | Liang, Wei | Wang, Yong | Zhang, Shuping
Artificial light at night (ALAN) has become increasingly recognized as a disruptor of the reproductive endocrine process and behavior of wild birds. However, there is no evidence that ALAN directly disrupt the hypothalamus-pituitary-gonadal (HPG) axis, and no information on the effects of different ALAN intensities on birds. We experimentally tested whether ALAN affects reproductive endocrine activation in the HPG axis of birds, and whether this effect is related to the intensity of ALAN, in wild tree sparrows (Passer montanus). Forty-eight adult female birds were randomly assigned to four groups. They were first exposed to a short light photoperiod (8 h light and 16 h dark per day) for 20 days, then exposed to a long light photoperiod (16 h light and 8 h dark per day) to initiate the reproductive endocrine process. During these two kinds of photoperiod treatments, the four groups of birds were exposed to 0, 85, 150, and 300 lux light in the dark phase (night) respectively. The expression of the reproductive endocrine activation related TSH-β, Dio2 and GnRH-I gene was significantly higher in birds exposed to 85 lux light at night, and significantly lower in birds exposed to 150 and 300 lux, relative to the 0 lux control. The birds exposed to 85 lux had higher peak values of plasma LH and estradiol concentration and reached the peak earlier than birds exposed to 0, 150, or 300 lux did. The lower gene expression of birds exposed to 150 and 300 lux reduced their peak LH and estradiol values, but did not delay the timing of these peaks compared to the control group. These results reveal that low intensity ALAN accelerates the activation of the reproductive endocrine process in the HPG axis, whereas high intensity ALAN retards it.
اظهر المزيد [+] اقل [-]Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata النص الكامل
2018
Zhang, Hangjun | Liu, Wenli | Chen, Bin | He, Jianbo | Chen, Feifei | Shan, Xiaodong | Du, Qiongxia | Li, Ning | Jia, Xiuying | Tang, Juan
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) are persistent toxic environmental pollutants that cause severe reproductive toxicity in animals. The goal of this study was to compare the reproductive toxic effects of TBBPA and TCBPA on male Rana nigromaculata and to expound on the mechanisms leading to these effects. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L of TBBPA and TCBPA for 14 days. Sperm numbers were counted by erythrometry. Sperm mobility and deformities were observed under a light microscope (400 ×). We used commercial ELISA kits to determine the serum content of testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Expression of androgen receptor (AR) mRNA was detected using real-time qPCR. Sperm numbers and sperm mobility were significantly decreased and sperm deformity was significantly increased in a concentration dependent manner following exposure to TBBPA and TCBPA. Sperm deformity was significantly greater in the 1 mg/L TCBPA (0.549) treatment group than in the 1 mg/L TBBPA (0.397) treatment group. Serum T content was significantly greater in the 0.01, 0.1 and 1 mg/L TBBPA and TCBPA experimental groups compared with controls, while E2 content was significantly greater in only the 1 mg/L TBBPA and TCBPA experimental groups. Expression levels of LH and FSH significantly decreased in the 1 mg/L TBBPA and TCBPA treatment groups. AR mRNA expression decreased markedly in all the treated groups. Our results indicated that TBBPA and TCBPA induced reproductive toxicity in a dose-dependent manner, with TCBPA having greater toxicity than TBBPA. Furthermore, changes in T, E2, LH, and FSH levels induced by TBBPA and TCBPA exposure, which led to endocrine disorders, also caused disturbance of spermatogenesis through abnormal gene expressions of AR in the testes.
اظهر المزيد [+] اقل [-]Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.) النص الكامل
2017
Altun, Serdar | Özdemir, Selçuk | Arslan, Harun
In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution.
اظهر المزيد [+] اقل [-]Atrazine triggers developmental abnormality of ovary and oviduct in quails (Coturnix Coturnix coturnix) via disruption of hypothalamo-pituitary-ovarian axis النص الكامل
2015
Qin, Lei | Du, Zheng-Hai | Zhu, Shi-Yong | Li, Xue-Nan | Li, Nan | Guo, Jing-Ao | Li, Jin-Long | Zhang, Ying
There has been a gradual increase in production and consumption of atrazine (ATR) in agriculture to meet the population rising demands. Female reproduction is necessary for growth and maintenance of population. However, ATR impact on females and particularly ovarian developmental toxicity is less clear. The aim of this study was to define the pathways by which ATR exerted toxic effects on ovarian development of ovary and hypothalamo-pituitary-ovarian (HPO) axis. Female quails were dosed by oral gavage from sexual immaturity to maturity with 0, 50, 250 and 500 mg ATR/kg/d for 45 days. ATR had no effect on mortality but depressed feed intake and growth and influenced the biochemical parameters. Notably, the arrested development of ovaries and oviducts were observed in ATR-exposed quails. The circulating concentrations of E2, P, LH and PRL were unregulated and FSH and T was downregulated in ATR-treated quails. The mRNA expression of GnRH in hypothalamo and LH in pituitary and FSH in ovary was downregulated significantly by ATR exposure and FSH and PRL in pituitary were upregulated. ATR exposure upregulated the level of P450scc, P450arom, 3β-HSD and 17β-HSD in ovary and downregulated ERβ expression in female quails. However, ATR did not change ERα expression in ovary. This study provides new insights regarding female productive toxicology of ATR exposure. Ovary and oviduct in sexually maturing females were target organs of ATR-induced developmental toxicity. We propose that ATR-induced developmental abnormality of ovary and oviduct is associated with disruption of gonadal hormone balance and HPO axis in female quails.
اظهر المزيد [+] اقل [-]Bisphenol AF blocks Leydig cell regeneration from stem cells in male rats النص الكامل
2022
Yu, Yige | Xin, Xiu | Ma, Feifei | Li, Xiaoheng | Wang, Yiyan | Zhu, Qiqi | Chen, Haiqiong | Li, Huitao | Ge, Ren-shan
Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the manufacture and use of plastics. The use of BPA is restricted, and its new analogs (including bisphenol AF, BPAF) are being produced to replace it. However, the effect of BPAF on the male reproductive system remains unclear. Here, we report the effect of BPAF on Leydig cell regeneration in rats. Leydig cells were eliminated by ethane dimethane sulfonate (EDS, i.p., 75 mg/kg) and the regeneration began 14 days after its treatment. We gavaged 0, 10, 100, and 200 mg/kg BPAF to rats on post-EDS day 7–28. BPAF significantly reduced serum testosterone and progesterone levels at ≧10 mg/kg. It markedly reduced serum levels of estradiol, luteinizing hormone, and follicle-stimulating hormone at 100 and 200 mg/kg. BPAF significantly reduced Leydig cell number at 200 mg/kg. BPAF significantly down-regulated the expression of Cyp17a1 at doses of 10 mg/kg and higher and the expression of Insl3, Star, Hsd17b3, Hsd11b1 in Leydig cells at 100 and 200 mg/kg, while it induced a significant up-regulation of Fshr, Dhh, and Sox9 in Sertoli cells at 200 mg/kg. BPAF induced oxidative stress and reduced the level of SOD2 at 200 mg/kg. It induced apoptosis and autophagy by increasing the levels of BAX, LC3B, and BECLIN1 and lowering the levels of BCL2 and p62 at 100 and 200 mg/kg. It induced autophagy possibly via decreasing the phosphorylation of AKT1 and mTOR. BPAF also significantly induced ROS production and apoptosis at a concentration of 10 μM, and reduced testosterone synthesis in rat R2C Leydig cells at a concentration of 10 μM in vitro, but did not affect cell viability after 24 h of treatment. In conclusion, BPAF is a novel endocrine disruptor, inhibiting the regeneration of Leydig cells.
اظهر المزيد [+] اقل [-]n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats النص الكامل
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
اظهر المزيد [+] اقل [-]