خيارات البحث
النتائج 1 - 10 من 73
Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils
2021
Yin, Naiyi | Zhao, Yongli | Wang, Pengfei | Du, Huili | Yang, Mei | Han, Zeliang | Chen, Xiaochen | Sun, Guoxin | Cui, Yanshan
To identify the role of gut microbiota in human health risk assessment, the bioaccessibility of heavy metals in 14 soil samples were determined in simulated gastrointestinal fluids. Compared to the small intestinal phase, the bioaccessibility values of the colon phase varied, either increased by 3.5-fold for As, by 2.2-fold for Cr, and by 1.6-fold for Ni, or reduced by 4.4-fold for Cu, respectively. The colon incubation with adult gut microbiota yielded higher bioaccessibility value of As (1.3 times) and Fe (3.4 times) than that of the child in most soil samples. Colon bioaccessibility was about 60% greater of Cd for the adult and 30% higher of Cr for the child. Congruent data on the bioaccessibility of Cu and Ni was observed. In addition, correlation analysis indicated that in vitro bioaccessibility was primarily related to total concentrations of heavy metals in soils, followed by soil pH and active Fe/Mn oxide. Significantly, risk assessment calculated based on colon bioaccessibility indicated that the target hazard quotient (THQ > 1) of As was presented in 3 soil samples for the adult (1.05–3.35) and in 9 soil samples for the child (1.06–26.93). The hazard index (HI) of the child was 4.00 on average, greater than that of the adult (0.62), primarily due to the contribution of As and Cd. It suggested non-carcinogenic risks are likely to occur in children through typical hand-to-mouth behavior. The adjustment of colon bioaccessibility will result in more accurate risk assessment of human exposure to heavy metals from oral ingestion of contaminated soils.
اظهر المزيد [+] اقل [-]Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating
2020
Luo, Yao | Ding, Jiayu | Hai, Ju | Tan, Wenfeng | Hao, Rong | Qiu, Guohong
Hexavalent chromium has aroused a series of environmental concerns due to its high mobility and toxicity. Iron and manganese oxides usually coexist in the environments and influence the speciation and geochemical cycling of chromium. However, the interaction mechanism of iron-manganese oxides with dissolved Cr(VI) remains largely unknown. In this work, the interaction processes of dissolved Cr(VI) and manganite in the presence of goethite coating were investigated, and the effects of pH (2.0–9.0) and iron oxide content were also studied. Manganite-goethite composites were formed with uniform micromorphologies in the system of manganite and Fe(II). In the reaction system of single manganite and Cr(VI), manganite could only adsorb but not reduce Cr(VI), with the adsorption amount decreasing at higher pHs. In the reaction system of manganite-goethite composites and Cr(VI), adsorbed Cr(VI) was reduced to Cr(III) by Fe(II) on composites surface. The generated Cr(III) was then retained as Cr(OH)₃ on the mineral surface. Goethite coating suppressed the re-oxidation of newly formed Cr(III) by manganite. The amounts of adsorbed Cr(VI) and generated Cr(III) increased with increasing iron oxide content, and increased first and then decreased with increasing pH. The Cr(III) formation and Cr(VI) adsorption amount reached the maximum at pH 5.0–6.0. The present work highlights the transformation and retention of Cr(VI) by iron-manganese oxides and provides potential implications for the use of such oxides in the remediation of Cr(VI) polluted waters and soils.
اظهر المزيد [+] اقل [-]Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water–soil interface
2020
Lu, Haiying | Dong, Yue | Feng, Yuanyuan | Bai, Yanchao | Tang, Xianjin | Li, Yuncong | Yang, Linzhang | Liu, Junzhuo
Periphyton plays a significant role in heavy metal transfer in wetlands, but its contribution to cadmium (Cd) bioavailability in paddy fields remains largely unexplored. The main aim of this study was to investigate the effect of periphyton on Cd behavior in paddy fields. Periphyton significantly decreased Cd concentrations in paddy waters. Non-invasive micro-test technology analyses indicated that periphyton can absorb Cd from water with a maximum Cd²⁺ influx rate of 394 pmol cm⁻² s⁻¹ and periphyton intrusion significantly increased soil Cd concentrations. However, soil Cd bioavailability declined significantly due to soil pH increase and soil redox potential (Eh) decrease induced by periphyton. With periphyton, more Cd was adsorbed and immobilized on organic matter, carbonates, and iron and manganese oxides in soil. Consequently, Cd content in rice decreased significantly. These findings give insights into Cd biogeochemistry in paddy fields with periphyton, and may provide a novel strategy for reducing Cd accumulation in rice.
اظهر المزيد [+] اقل [-]Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay
2019
Shaheen, Sabry M. | Wang, Jianxu | Swertz, Ann-Christin | Feng, Xinbin | Bolan, Nanthi | Rinklebe, Jörg
Enhancing metals phytoextraction using gentile mobilizing agents might be an appropriate approach to increase the phytoextraction efficiency and to shorten the phytoremediation duration. The effect of sulfur-impregnated organoclay (SIOC) on the redistribution of potentially toxic elements (PTEs) among their geochemical fractions in soils and their plant uptake has not yet been studied. Therefore, our aim is to investigate the role of different SIOC application doses (1%, 3% and 5%) on operationally defined geochemical fractions (soluble + exchangeable; bound to carbonate; manganese oxide; organic matter; sulfide; poorly- and well-crystalline Fe oxide; and residual fraction) of Cd, Cr, Cu, Ni, Pb, and Zn, and their accumulation by pea (Pisum sativum) and corn (Zea mays) in a greenhouse pot experiment using a polluted floodplain soil. The SIOC caused a significant decrease in soil pH, and an increase in organic carbon and total sulfur content in the soil. The addition of SIOC increased significantly the soluble + exchangeable fraction and bioavailability of the metals. The SIOC leads to a transformation of the residual, organic, and Fe-Mn oxide fractions of Cd, Cu, Ni, and Zn to the soluble + exchangeable fraction. The SIOC addition increased the potential mobile (non-residual) fraction of Cr and Pb. The SIOC increased the sulfide fraction of Cr, Ni, and Zn, while it decreased the same fraction for Cd, Cu, and Pb. The effect of SIOC on the redistribution of metal fractions increased with enhancing application dosages. Pea accumulated more metals than corn with greater accumulation in the roots than shoots. Application of the higher dose of SIOC promoted the metals accumulation by roots and their translocation to shoots of pea and corn. Our results suggest the potential suitability of SIOC for enhancing the phytomanagement of PTEs polluted soils and reducing the environmental risk of these pollutants.
اظهر المزيد [+] اقل [-]Impacts of ammonium ion on triclinic birnessites towards the transformation of As(III)
2022
Jiang, Lu | Wu, Pingxiao | Xu, Yijing | Li, Yihao | Chen, Meiqing | Ahmed, Zubair | Zhu, Nengwu
Triclinic birnessite (TB), a typical layered Mn oxide which is abundant naturally occurring minerals with a vital impact on the transformation of arsenite (As(III)) by adsorption and oxidation. As one of the most common critical metalloids, ammonium ion (NH₄⁺) universally coexists with birnessite in marine, sediments or groundwater where are contaminated with As(III). In this study, we investigated the impacts of NH₄⁺ on TB towards the transformation of As(III). Compared with the original TB (40.1%), the As(III) removal efficiencies of three different concentration (0.5 M, 1 M and 2 M) NH₄⁺ impressed triclinic birnessite (TB-0.5 N, TB-1N and TB-2N) are increased rapidly in the order of: TB-2N (80.4%) > TB-1N (75.8%) > TB-0.5 N (71.5%). In addition, TB-2N exhibited the highest initial oxidation rate of 0.0031 min⁻¹ which exceeds twice as much as this of TB (0.0014 min⁻¹). And TB-2N could reach the max oxidation efficiency when the As concentration is 0.08 mM. Due to two different mechanisms of As(III) oxidation on birnessites under acidic and alkaline conditions, TB-2N showed a higher removal efficiency than TB at pH 3.0, 5.0, 7.0 and 9.0. Hence, there are two main reasons for the advanced As(III) oxidation capacity of TB-2N. One is the improvement of the average oxidation state of Mn, the other is the increase of oxygen vacancy with the coexistence of NH₄⁺. Moreover, the larger specific surface area of TB-2N also contribute to enhancing As(III) oxidation capacity. This study holds a fundamental understanding of the behavior of triclinic birnessite which is coexisted with ammonium ion towards the transformation of As(III) in the environment.
اظهر المزيد [+] اقل [-]Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox
2019
Liu, Lihu | Peng, Qichuan | Qiu, Guohong | Zhu, Jun | Tan, Wenfeng | Liu, Chengshuai | Zheng, Lirong | Dang, Zhi
The heavy metal ion adsorption performance of birnessite (a layer-structured manganese oxide) can be enhanced by decreasing the Mn average oxidation state (Mn AOS) and dissolution−recrystallization during electrochemical redox reactions. However, the electrochemical adsorption processes of heavy metal ions by tunnel-structured manganese oxides are still enigmatic. Here, tunnel-structured manganese oxides including pyrolusite (2.3 Å × 2.3 Å tunnel), cryptomelane (4.6 Å × 4.6 Å tunnel) and todorokite (6.9 Å × 6.9 Å tunnel) were synthesized, and their electrochemical adsorptions for Cd²⁺ were performed through galvanostatic charge−discharge. The influence of both supporting ion species in the tunnel and tunnel size on the electrochemical adsorption performance was also studied. The adsorption capacity of tunnel-structured manganese oxides for Cd²⁺ was remarkably enhanced by electrochemical redox reactions. Relative to K⁺ in the tunnel of cryptomelane, the supporting ion H⁺ was more favorable to the electrochemical adsorption of Cd²⁺. With increasing initial pH and specific surface area, the electrochemical adsorption capacity of cryptomelane increased. The cryptomelane electrode could be regenerated by galvanostatic charge−discharge in Na₂SO₄ solution. Due to the differences in their tunnel size and supporting ion species, the tunnel-structured manganese oxides follow the order of cryptomelane (192.0 mg g⁻¹) > todorokite (44.8 mg g⁻¹) > pyrolusite (13.5 mg g⁻¹) in their electrochemical adsorption capacities for Cd²⁺.
اظهر المزيد [+] اقل [-]Simultaneous attenuation of phytoaccumulation of Cd and As in soil treated with inorganic and organic amendments
2019
Yao, Aijun | Ju, Lin | Ling, Xiaodan | Liu, Chong | Wei, Xiange | Qiu, Hao | Tang, Yetao | Morel, J. L. (Jean-Louis) | Qiu, Rongliang | Li, Charlie Chunlin | Wang, Shizhong
A novel FeSiCa rich material (IS), chicken manure (CM) and its biochar were investigated for their efficiency in simultaneous remediation of Cd and As uptake by the vegetable Brassica chinensis L. Wet chemistry analysis and X-ray powder diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy as well as Fourier transform infrared spectroscopy were used to reveal the mechanisms responsible for Cd and As fixation in the amended soils. The IS treatment performed best in reducing Cd uptake, while the combination of IS and CM was the optimal one for As fixation. The precipitation/co-precipitation (in cadmium silicate/phosphate/phosphate hydroxide, cadmium iron and manganese oxides under alkaline conditions, and calcium/magnesium/ferric arsenates) and specific chemisorption (by amorphous iron/manganese oxides) were proved to be more efficient in simultaneously lowering As and Cd phytoavailability than was organic complexation. These findings demonstrate that FeSiCa and FeSiCaC amendments are highly efficient and promising in-situ remediation systems for safe crop production on soils contaminated with Cd and As.
اظهر المزيد [+] اقل [-]Major and minor elemental compositions of streambed biofilms and its implications of riverine biogeochemical cycles
2018
Mori, Naoki | Sugitani, Kenichiro | Yamamoto, Mariko | Tomioka, Rie | Sato, Miyako | Harada, Naomi
Chemical compositions of streambed biofilms from a major river of central Japan (the Kushida River) were obtained, with data of associated sediments (fine-grained fractions < 63 μm) and dissolved components of waters, in order to provide preliminary information about biogeochemical significance of streambed biofilms. During the sampling period (July 31st to August 3rd, 2013), dissolved components of the river waters were influenced by the dam reservoir. Concentrations of NO₃⁻, silica (as Si), SO₄²⁻, PO₄³⁻ and Ca²⁺ decreased across the dam, whereas Fe and Mn increased across the dam, and then decreased downstream rapidly. Streambed biofilms contain significant amount of non-nutrient elements such as Al (up to 21% as Al₂O₃ on water and others-free basis), indicating that they are contaminated as siliciclatic (silt and clay) materials. Siliciclastic materials in the biofilms are basically compositionally similar to fine-grained (<63 μm) fractions of streambed sediments. However, some elements such as Ca, P, Mn, and Zn are markedly enriched in the biofilms. Particularly, Mn concentrations in the biofilm samples collected just below the dam reservoir are very high (∼4.0 wt %), probably due to accumulation from the discharged water. Concentrations of trace elements such as P, Cr, Cu, Zn and V appear to be controlled by amounts of Fe-oxides and/or Mn-oxides in biofilms. Numbers of factors are involved in controlling chemical compositions of streambed biofilms, including amount of contaminated siliciclastics, authigenic mineral formation, adsorption of dissolved materials and microbial metabolisms. As demonstrated by this study, systematic analyses including major elements and comparison with associated sediments and waters could reveal biogeochemistry of this complex system.
اظهر المزيد [+] اقل [-]Characteristics and compound-specific carbon isotope compositions of sedimentary lipids in high arsenic aquifers in the Hetao basin, Inner Mongolia
2018
Mao, Ruoyu | Guo, Huaming | Xiu, Wei | Yang, Yuance | Huang, Xianyu | Zhou, Yinzhu | Li, Xiaomeng | Jin, Jianyi
Organic matter, as an electron donor, plays a vital role in As mobilization mediated by microorganisms during reductive dissolution of Fe/Mn oxides in shallow aquifers. However, the specific types and sources of organic matter involved in biogeochemical processes accelerating As mobilization are still controversial. Both sediment and groundwater samples were collected at different depths from aquifers of the Hetao Basin, a typical inland basin hosting high As groundwater. Sedimentary lipids and their compound-specific carbon isotope ratios were analyzed to evaluate characteristics and sources of organic matter. Results show that sedimentary As were well correlated with Fe and Mn oxides, suggesting that As exist as Fe/Mn oxide bound forms. Groundwater As far exceeded the drinking water guide value of 10 μg/L. Moreover, As concentrations in shallow groundwater were relatively higher. Lipids in clay were mainly originated from terrestrial higher plants, while that in fine sand samples were derived from terrestrial higher plants, microorganism and petroleum. Shallow fine sand samples were also characterized by evident in-situ biodegradation. Compound-specific carbon isotope compositions of sedimentary lipids showed that short-chain n-alkanes and n-alkanoic acids had more positive δ13C values compared to long-chain compounds, especially in shallow fine sand samples. δ13CTOC were also low in shallow fine sand samples. These results jointly indicate that these lipids in shallow fine sand samples acted as carbon source for indigenous microorganism and the short-chain components were particularly more vulnerable to biodegradation, which may contribute to high As concentrations in shallow groundwater. The new findings provide the first evidence that short chain length n-alkyl compounds afforded a source of potential electron donors for microbially mediated As mobilization process in the shallow aquifers.
اظهر المزيد [+] اقل [-]Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel
2018
Hou, Jingtao | Sha, Zhenjie | Hartley, William | Tan, Wenfeng | Wang, Mingxia | Xiong, Juan | Li, Yuanzhi | Ke, Yujie | Long, Yi | Xue, Shengguo
Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K+ concentration in the tunnel. Batch experimental results reveal that increasing K+ concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min−1, but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K+ concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K+ concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K+ doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions.
اظهر المزيد [+] اقل [-]