خيارات البحث
النتائج 1 - 10 من 107
Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China النص الكامل
2020
Peng, Quancai | Song, Jinming | Li, Xuegang | Yuan, Huamao | Liu, Mengtan | Duan, Liqin | Zuo, Jiulong
Pharmaceutically active compounds (PhACs) have attracted increasing attention due to their large consumption volumes, high bioactivity and potential ecotoxicity. In this study, a total of 150 commonly used drugs were investigated in sediments of Jiaozhou Bay (JZB). Twenty-five target compounds were detected, of which ten were discovered for the first time in marine sediments. The range of total PhAC content was 3.62–21.4 ng/g dry weight. Ketoprofen (2.49 ng/g), oxytetracycline (1.00 ng/g) and roxithromycin (0.97 ng/g) were the preponderant PhACs. PhACs gradually decreased from east to west, and the distribution of PhACs in the sediment was controlled by the source channel, seawater dynamic process and sediment composition. The diatom, organic matter, and clay proportions in the sediments and the nutrients in the overlying water were the most important environmental factors affecting the distribution of PhACs. PhAC pollution in the sediments of the JZB exhibited an increasing trend. Coprostanol could be used as a chemical indicator of the PhAC concentration in JZB sediments. PhACs were mainly derived from direct pollution due to human fecal excretion in the eastern region. Ofloxacin, tetracycline and oxytetracycline were found to pose high or medium risks to aquatic organisms. It is necessary and urgent to improve the treatment technology of drug residues in sewage treatment plants to decrease the pollution of PhAC residues. With the continuous aging of the global population, the use of PhACs will increase rapidly, which may cause more unpredictable threats to the marine ecosystem. Therefore, the monitoring of PhACs in the marine environment needs to be strengthened, and studies on PhAC occurrence and effects must be considered a priority in global environmental research.
اظهر المزيد [+] اقل [-]Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean النص الكامل
2020
Zhang, Dongdong | Liu, Xidan | Huang, Wei | Li, Jingjing | Wang, Chunsheng | Zhang, Dongsheng | Zhang, Chunfang
Microplastics are ubiquitous in marine environments. Sediments and marine organisms are recognized as the carriers and final destinations of microplastics. However, research on the concentration and abundance of microplastics in deep-sea sediments and organisms is limited. In this study, samples of sediments and organisms were collected from deep-sea locations of the western Pacific Ocean, with the depth ranging from 4601 m to 5732 m. Microplastics were extracted from the samples and analyzed by micro-Fourier-transform infrared spectroscopy. The average abundance of microplastics in the sediments was 240 items per kg dry weight of sediment. The microplastics were predominantly fibrous in shape (52.5%), blue in color (45.0%), and less than 1 mm in size (90.0%). The most commonly detected polymers were poly(propylene-ethylene) copolymer (40.0%) and polyethylene terephthalate (27.5%). The concentrations of polychlorinated biphenyls (PCBs), which are representatives of persistent organic pollutants, in the pore water of sediment samples were also investigated. A significant correlation between the distribution of microplastics and the PCB concentrations in sediments was found (P = 0.016). Microplastics were also detected in deep-sea organisms (i.e., Crinoidea, Pheronematidae, Ophiuroidea, and Gammaridea) in the sampling region, with an abundance of 0–3 items per individual biological sample. This assessment of microplastics in deep-sea sediments and benthic organisms of the western Pacific Ocean confirms that microplastic pollution exists in the deep-sea ecosystems of this region.
اظهر المزيد [+] اقل [-]Response of microbial community to the lysis of Phaeocystis globosa induced by a biological algicide, prodigiosin النص الكامل
2020
Zhang, Huajun | Xie, Weijuan | Hou, Fanrong | Hu, Jian | Yao, Zhiyuan | Zhao, Qunfen | Zhang, Demin
Terminating harmful algal blooms by using algicidal agents is a strong disturbance event in marine environment, which has powerful structural influences on microbial ecosystems. But, the response of microbial ecosystem to algicidal agent is largely unknown. Here, we conducted Phaeocystis globosa microcosms to investigate the dynamics, assembly processes, and co-occurrence patterns of microbial communities in response to algicidal process induced by a highly efficient algicidal agent, prodigiosin, by using 16S rRNA gene amplicon sequencing. The α-diversity of microbial community showed no obvious changes during the algicidal process in P. globosa microcosm treated with prodigiosin (group PD). Rhodobacteraceae increased significantly (P < 0.05) during algicidal process in PD, and this was mainly due to the lysis of P. globosa cells. Compared to the control group, the temporal turnover rates of common and rare taxa in PD were significantly higher because of the lysis of P. globosa induced by prodigiosin. Neutral processes mainly drove the assembly of microbial communities in all microcosms, even though the algicidal process induced by prodigiosin had no effect on the assembly processes. In addition, the time-decay relationship and co-occurrence network analysis indicate that rare taxa play important roles in maintaining microbial community stability in response to the algicidal process, rather than prodigiosin. These findings suggest that prodigiosin cannot affect the dynamics of microbial communities directly; however, future investigations into the function of microbial communities in response to prodigiosin remain imperative.
اظهر المزيد [+] اقل [-]Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective النص الكامل
2020
Meng, Yuchuan | Kelly, Frank J. | Wright, Stephanie L.
Microplastics have been increasingly documented in freshwater ecosystems in recent years, and growing concerns have been raised about their potential environmental health risks. To assess the current state of knowledge, with a focus on the UK, a literature review of existing freshwater microplastics studies was conducted. Sampling and analytical methodologies currently used to detect, characterise and quantify microplastics were assessed and microplastic types, sources, occurrence, transport and fate, and microplastic-biota interactions in the UK’s freshwater environments were examined. Just 32% of published microplastics studies in the UK have focused on freshwater environments. These papers cover microplastic contamination of sediments, water and biota via a range of methods, rendering comparisons difficult. However, secondary microplastics are the most common type, and there are point (e.g. effluent) and diffuse (non-point, e.g. sludge) sources. Microplastic transport over a range of spatial scales and with different residence times will be influenced by particle characteristics, external forces (e.g. flow regimes), physical site characteristics (e.g. bottom topography), the degree of biofouling, and anthropogenic activity (e.g. dam release), however, there is a lack of data on this. It is predicted that impacts on biota will mirror that of the marine environment. There are many important gaps in current knowledge; field data on the transport of microplastics from diffuse sources are less available, especially in England. We provide recommendations for future research to further our understanding of microplastics in the environment and their impacts on freshwater biota in the UK.
اظهر المزيد [+] اقل [-]Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments النص الكامل
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments النص الكامل
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
The ongoing increase of CO₂ in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species’ survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.
اظهر المزيد [+] اقل [-]Seawater carbonate chemistry and sperm physiology in Mytilus galloprovincialis النص الكامل
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria-Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
The ongoing increase of CO2 in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species' survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.
اظهر المزيد [+] اقل [-]A non-invasive method to monitor marine pollution from bacterial DNA present in fish skin mucus النص الكامل
2020
Montenegro, Diana | Astudillo-García, Carmen | Hickey, Tony | Lear, Gavin
Marine coastal contamination caused by human activity is a major issue worldwide. The implementation of effective pollution monitoring programs, especially in coastal areas, is important and urgent. The use of biological, physiological, or biochemical measurements to monitor the impacts of pollution has garnered increasing interest, particularly for the development of new non-invasive tools to assess water pollution. Fish skin mucus is in direct contact with the marine environment, making it a favourable microenvironment for the formation of biofilm bacterial communities. In this study, we developed a non-invasive technique, sampling fish skin mucus to determine and analyse bacterial community composition using next-generation sequencing. We hypothesised that bacterial communities associated with the skin mucus of a common harbour benthic blennioid triplefin fish, Forsterygion capito, would reflect conditions of different marine environments. We detected clear differences in bacterial community alpha-diversity between contaminated and reference sites. Beta-diversity analysis also revealed differences in the bacterial community structure of the skin mucus of fish inhabiting different geographical areas. The relative abundance of different bacterial orders varied among sites, as determined by linear discriminant analysis (LDA) and effect size (LEfSe) analyses. The observed variation in bacterial community compositions correlated more strongly with variation in hydrocarbons than to various metal concentrations. Using advanced DNA sequencing technologies, we have developed a novel non-invasive, low-cost and effective tool to monitor the impacts of pollution through analysis of the bacterial communities associated with fish skin mucus.
اظهر المزيد [+] اقل [-]How safe are the new green energy resources for marine wildlife? The case of lithium النص الكامل
2020
Viana, Thainara | Ferreira, Nicole | Henriques, Bruno | Leite, Carla | De Marchi, Lucia | Amaral, Joana | Freitas, Rosa | Pereira, Eduarda
How safe are the new green energy resources for marine wildlife? The case of lithium النص الكامل
2020
Viana, Thainara | Ferreira, Nicole | Henriques, Bruno | Leite, Carla | De Marchi, Lucia | Amaral, Joana | Freitas, Rosa | Pereira, Eduarda
Considering the increasing use of Lithium (Li) and the necessity to fulfil this demand, labile Li occurrence in the environment will be enhanced. Thus, additional research is needed regarding the presence of this element in marine environment and its potential toxic impacts towards inhabiting wildlife. The aim of the present study was to evaluate Li toxicity based on the exposure of Mytilus galloprovincialis to this metal, assessing the biochemical changes related with mussels’ metabolism, oxidative stress and neurotoxicity. For this, organisms were exposed to different Li concentrations (100, 250, 750 μg/L) for 28 days. The results obtained clearly demonstrated that Li lead to mussels’ metabolism depression. The present study also revealed that, especially at the highest concentrations, antioxidant and biotransformation enzymes were not activated, leading to the occurrence of lipid peroxidation and loss of redox homeostasis, with increased content in oxidized glutathione in comparison to the reduced form. Furthermore, after 28 days, higher Li exposure concentrations induced neurotoxic effects in mussels, with a decrease in acetylcholinesterase enzyme activity. The responses observed were closely related with Li concentrations in mussels’ tissues, which were more pronounced at higher exposure concentrations. Such results highlight the potential toxic effects of Li to marine species, which may even be higher under predicted climate changes and/or in the presence of other pollutants.
اظهر المزيد [+] اقل [-]How safe are the new green energy resources for marine wildlife? The case of lithium النص الكامل
2020
Viana, Thainara | Ferreira, Nicole | Henriques, Bruno | Leite, Carla | De Marchi, Lucia | Amaral, Joana | Freitas, Rosa | Pereira, Eduarda
Considering the increasing use of Lithium (Li) and the necessity to fulfil this demand, labile Li occurrence in the environment will be enhanced. Thus, additional research is needed regarding the presence of this element in marine environment and its potential toxic impacts towards inhabiting wildlife. The aim of the present study was to evaluate Li toxicity based on the exposure of Mytilus galloprovincialis to this metal, assessing the biochemical changes related with mussels' metabolism, oxidative stress and neurotoxicity. For this, organisms were exposed to different Li concentrations (100, 250, 750 μg/L) for 28 days. The results obtained clearly demonstrated that Li lead to mussels' metabolism depression. The present study also revealed that, especially at the highest concentrations, antioxidant and biotransformation enzymes were not activated, leading to the occurrence of lipid peroxidation and loss of redox homeostasis, with increased content in oxidized glutathione in comparison to the reduced form. Furthermore, after 28 days, higher Li exposure concentrations induced neurotoxic effects in mussels, with a decrease in acetylcholinesterase enzyme activity. The responses observed were closely related with Li concentrations in mussels' tissues, which were more pronounced at higher exposure concentrations. Such results highlight the potential toxic effects of Li to marine species, which may even be higher under predicted climate changes and/or in the presence of other pollutants. | published
اظهر المزيد [+] اقل [-]Microplastic abundance, distribution and composition in the mid-west Pacific Ocean النص الكامل
2020
Wang, Sumin | Chen, Hongzhe | Zhou, Xiwu | Tian, Yongqing | Lin, Cai | Wang, Weili | Zhou, Kaiwen | Zhang, Yuanbiao | Lin, Hui
Microplastic pollution is widespread across most ocean basins around the world. Microplastics (MPs) are small plastic particles that have a significant impact on the marine environment. Various research on plastic pollution have been conducted in several regions. However, currently, there is limited data on the distribution and concentration of MPs in the mid-west Pacific Ocean. Therefore, this study we investigated the abundance, distribution, characteristics, and compositions of MPs in this region. Sea surface water samples collected from 18 stations showed a microplastic concentration range of 6028–95,335 pieces/km² and a mean concentration of 34,039 ± 25,101 pieces/km². Highest microplastic concentrations were observed in the seamount region of western Pacific. We observed a significant positive correlation between microplastic abundance and latitude across the study region. It was observed that microplastic concentrations decreased with increasing offshore distance at sites located on a 154° W transect. Fibres/filaments were the dominant microparticles observed in this study (57.4%), followed by fragments (18.3%). The dominant particle size range was 1–2.5 mm (35.1%), followed by 0.5–1 mm (28.5%), and the dominant particle colour was white (33.8%), followed by transparent (31.0%) and green (24.6%). The most common polymer identified by μ-Raman was polypropylene (39.1%), followed by polymethyl methacrylate (16.2%), polyethylene (14.1%) and polyethylene terephthalate (14.2%). The possible sources and pathways of microplastics in the study area were proposed based on the morphological and compositional characteristics of particles, their spatial distribution patterns, and shipboard current profiling (ADCP). Our study contributes to the further understanding of MPs in remote ocean areas.
اظهر المزيد [+] اقل [-]Marine mercury-methylating microbial communities from coastal to Capbreton Canyon sediments (North Atlantic Ocean) النص الكامل
2020
Azaroff, Alyssa | Goñi Urriza, Marisol | Gassie, Claire | Monperrus, Mathilde | Guyoneaud, Rémy
Microbial mercury (Hg) methylation transforms inorganic mercury to neurotoxic methylmercury (MeHg) mainly in aquatic anoxic environments. Sampling challenges in marine ecosystems, particularly in submarine canyons, leads to a lack of knowledge about the Hg methylating microbia in marine sediments. A previous study showed an enrichment of mercury species in sediments from the Capbreton Canyon where both geochemical parameters and microbial activities constrained the net MeHg production. In order to characterize Hg-methylating microbial communities from coastal to deeper sediments, we analysed the diversity of microorganisms’ (16S rDNA-based sequencing) and Hg methylators (hgcA based cloning and sequencing). Both, 16S rDNA and hgcA gene analysis demonstrated that the putative Hg-methylating prokaryotes were likely within the Deltaproteobacteria, dominated by sulfur-compounds based reducing bacteria (mainly sulfate reducers). Additionally, others clades were also identified as carrying HgcA gene, such as, Chloroflexi, Spirochaetes, Elusimicrobia, PVC superphylum (Plantomycetes, Verrucomicrobia and Chlamydiae) and Euryarchaea. Nevertheless, 61% of the hgcA sequences were not assigned to specific clade, indicating that further studies are needed to understand the implication of new microorganisms carrying hgcA in the Hg methylation in marine environments. These first results suggest that sulfur cycle drives the Hg-methylation in marine ecosystem.
اظهر المزيد [+] اقل [-]Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size النص الكامل
2020
Lindeque, Penelope K. | Cole, Matthew | Coppock, Rachel L. | Lewis, Ceri N. | Miller, Rachael Z. | Watts, Andrew J.R. | Wilson-McNeal, Alice | Wright, Stephanie L. | Galloway, Tamara S.
Microplastic debris is ubiquitous and yet sampling, classifying and enumerating this prolific pollutant in marine waters has proven challenging. Typically, waterborne microplastic sampling is undertaken using nets with a 333 μm mesh, which cannot account for smaller debris. In this study, we provide an estimate of the extent to which microplastic concentrations are underestimated with traditional sampling. Our efforts focus on coastal waters, where microplastics are predicted to have the greatest influence on marine life, on both sides of the North Atlantic Ocean. Microplastic debris was collected via surface trawls using 100, 333 and 500 μm nets. Our findings show that sampling using nets with a 100 μm mesh resulted in the collection of 2.5-fold and 10-fold greater microplastic concentrations compared with using 333 and 500 μm meshes respectively (P < 0.01). Based on the relationship between microplastic concentrations identified and extrapolation of our data using a power law, we estimate that microplastic concentrations could exceed 3700 microplastics m⁻³ if a net with a 1 μm mesh size is used. We further identified that use of finer nets resulted in the collection of significantly thinner and shorter microplastic fibres (P < 0.05). These results elucidate that estimates of marine microplastic concentrations could currently be underestimated.
اظهر المزيد [+] اقل [-]