خيارات البحث
النتائج 1 - 10 من 11
Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR
2011
Chanpiwat, Penradee | Sthiannopkao, Suthipong | Cho, Kyung Hwa | Kim, Kyoung-Woong | San, Vibol | Suvanthong, Boukeo | Vongthavady, Chantha
Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from <0.5μgL⁻¹ to 278μgL⁻¹, with over half exceeding the WHO guideline of 10μgL⁻¹. 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions.
اظهر المزيد [+] اقل [-]Assessing arsenic intake from groundwater and rice by residents in Prey Veng province, Cambodia
2014
Phan, Kongkea | Phan, Samrach | Heng, Savoeun | Huoy, Laingshun | Kim, Kyoung-Woong
We investigated total daily intake of As by residents in Prey Veng province in the Mekong River basin of Cambodia. Groundwater (n = 11), rice (n = 11) and fingernail (n = 23) samples were randomly collected from the households and analyzed for total As by inductively coupled plasma mass spectrometry. Calculation indicated that daily dose of inorganic As was greater than the lower limits on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL0.5 equals to 3.0 μg d−1 kg−1body wt.). Moreover, positive correlation between As in fingernail and daily dose of As from groundwater and rice and total daily dose of As were found. These results suggest that the Prey Veng residents are exposed to As in groundwater. As in rice is an additional source which is attributable to high As accumulation in human bodies in the Mekong River basin of Cambodia.
اظهر المزيد [+] اقل [-]Assessing mixed trace elements in groundwater and their health risk of residents living in the Mekong River basin of Cambodia
2013
Phan, Kongkea | Phan, Samrach | Huoy, Laingshun | Suy, Bunseang | Wong, Ming Hung | Jamal Hisham Hashim, | Mohamed Yasin, Mohamed Salleh | Aljunid, Syed Mohamed | Sthiannopkao, Suthipong | Kim, Kyoung-Woong
We investigated the potential contamination of trace elements in shallow Cambodian groundwater. Groundwater and hair samples were collected from three provinces in the Mekong River basin of Cambodia and analyzed by ICP-MS. Groundwater from Kandal (n = 46) and Kraite (n = 12) were enriched in As, Mn, Ba and Fe whereas none of tube wells in Kampong Cham (n = 18) had trace elements higher than Cambodian permissible limits. Risk computations indicated that 98.7% and 12.4% of residents in the study areas of Kandal (n = 297) and Kratie (n = 89) were at risk of non-carcinogenic effects from exposure to multiple elements, yet none were at risk in Kampong Cham (n = 184). Arsenic contributed 99.5%, 60.3% and 84.2% of the aggregate risk in Kandal, Kratie and Kampong Cham, respectively. Sustainable and appropriate treatment technologies must therefore be implemented in order for Cambodian groundwater to be used as potable water.
اظهر المزيد [+] اقل [-]Toxicity of di-2-ethylhexyl phthalate and tris (2-butoxyethyl) phosphate to a tropical micro-crustacean (Ceriodaphnia cornuta) is higher in Mekong River water than in standard laboratory medium
2022
Dao, Thanh-Son | Nguyễn, Văn Tài | Baduel, Christine | Bui, Manh-Ha | Tran, Viet Tuan | Phạm, Thanh Lưu | Bui, Ba-Trung | Dinh, Khuong V.
Plasticizers such as di(2-ethylhexyl) phthalate (DEHP) and tris (2-butoxyethyl) phosphate (TBOEP) are manufactured chemicals produced in high volumes. These chemicals are frequently detected in the aquatic environment and cause toxic effects on organisms. In this study, we assessed the chronic impacts of DEHP and TBOEP, respectively, at the concentration of 100 µg L⁻¹ dissolved in the artificial medium (M4/4) and Mekong River water on life history traits of a tropical micro-crustacean, Ceriodaphnia cornuta, for 14 days. DEHP and TBOEP substantially reduced the survival of C. cornuta. In M4/4 medium, both plasticizers strongly enhanced reproduction but did not influence the growth of C. cornuta. Mekong River water, plasticizers-exposed C. cornuta produced less neonates than those in the control. The detrimental impacts of DEHP and TBOEP on the fitness of C. cornuta were much stronger in natural river water than in M4/4. Our results suggest that plasticizers can cause adverse effects on tropical freshwater cladocerans, particularly in natural water. These results are of a deep concern, as national and international regulatory guidelines which are based on ecotoxicological tests using standard media may not fully capture these effects.
اظهر المزيد [+] اقل [-]Current research status of large river systems: a cross-continental comparison
2020
Su, Wan | Tao, Juan | Wang, Jun | Ding, Chengzhi
Rivers play an irreplaceable role in nature and human society but are the most vulnerable ecosystem in the world to multiple environmental stressors. However, the global-scale research status and the distribution patterns of major stressors in large rivers remain unclear. This study analysed research publications (12,807 documents from 1900 to 2019) related to six large rivers with continental representativeness to tackle these knowledge gaps. The results showed that the total outputs have grown rapidly over the study period, particularly since the 1990s. Consistent with the varied environmental characteristics and problems among the rivers, the research outputs and focuses demonstrated clear differences, which could further be attributed to geographical location, journal preferences and the economic strength of the country in which the river is located. Overall, climate change was the most frequently and widely considered environmental stressor in large rivers. Regardless of climate change, species diversity and hydropower development were widely addressed in the Amazon, Congo and Mekong river basins. Water pollution was the main stressor studied in the Rhine River and Mississippi River, while agricultural irrigation and drought were the most frequently addressed research subjects in the Murray-Darling River. This study provides a comprehensive understanding of the research status and stressor distribution in large global rivers, highlighting the relationship between river research and geographical regions, pointing out future research directions and providing management guidance for large rivers.
اظهر المزيد [+] اقل [-]Influence of Physicochemical Factors on Bacterial Communities Along the Lower Mekong River Assessed by Illumina Next-Generation Sequencing
2018
(Michael J.),
The relationship between land use and microbial community structure at seven sites along the Lower Mekong River, between Thailand and the Loa People’s Democratic Republic, was investigated using Illumina next-generation sequencing of the V5–V6 hypervariable regions of the 16S rRNA gene. In total, 14,470 operational taxonomic units (OTUs) were observed. Community composition was significantly different between sampling years. Moraxellaceae and Comamonadaceae were the predominant bacterial families in upstream sites, which included agricultural and urban areas in the Loei and Nong Khai provinces of Thailand. Members of the family Comamonadaceae were prevalent in agricultural and urban sites in Bueng Kan Province, while Moraxellaceae and Burkholderiaceae were the major families in a site downstream of an urban area in the Nakhon Phanom Province of Thailand. The bacterial community observed from a forested area of Patam National Park in Thailand showed greatest diversity, and several major bacterial families including Comamonadaceae, Moraxellaceae, and Pseudomonadaceae were more dominant than other sites. The diversity of fecal indicator bacteria, determined by ERIC-PCR DNA fingerprinting, indicated the presence of 29 strains of Escherichia coli and 21 strains of Enterococcus, while TP-RAPD patterns represented six species of Enterococcus. Results of this study indicated that although the difference in the distribution of bacterial phyla and families was found among sampling sites, the bacterial community composition, based on the presence of OTUs, continuously retained its signature across approximately 758 km along the Lower Mekong River, regardless of the type of land use. Water parameters, including temperature, turbidity, DO, and air temperature, also differentially affected the abundance of bacterial families along the Mekong River.
اظهر المزيد [+] اقل [-]Heavy metal characteristics in porewater profiles, their benthic fluxes, and toxicity in cascade reservoirs of the Lancang River, China
2022
Zhao, Zhenjie | Li, Shehong | Wang, Shilu | Liao, Jie | Lu, Weiqi | Tan, Di | Yang, Dan
The construction of cascade reservoirs on the Lancang River (the upper Mekong) has an important influence on the distribution and accumulation of heavy metals. Heavy metal contents in porewater provide vital information about their bioavailability, studies on this aspect are rare until now. In this study, sediment cores were collected from four adjacent cascade reservoirs in the upper Mekong River to study the distribution, potential sources, diffusive fluxes and toxicity of heavy metals in porewater. The findings indicated that the average contents of Mn, Fe, As, Ni, Cu, Zn, Cd, and Pb in the sediment porewater were 6442, 644, 11.50, 2.62, 1.23, 3.95, 0.031, and 0.24 µg/L, respectively; these contents varied as the sediment depth increased. Correlation analysis and principal component analysis showed that Cu, Zn, Cd and Pb were mainly associated with anthropogenic sources, As, Mn and Fe were primarily affected by natural inputs, and Ni was affected by a combination of natural and anthropogenic effects. The diffusive fluxes of Mn, Fe, As, Ni, Cu, Zn, Cd, and Pb in the cascade reservoirs of the Lancang River were 919 – 35,022, 2.12 – 2881, 0.17 – 750, 0.71 – 7.70, 2.30 – 31.18, (-3.35) – 6.40, 0.06 – 0.54, and (-0.52) – 4.08 µg/(m² day), respectively. The results of toxic units suggested that the contamination and toxicity of heavy metals in porewater were not serious. Overall, in the cascade reservoirs, the content and toxicity of heavy metals in porewater of the upstream reservoirs were higher than that of the downstream reservoirs. The operation of the cascade reservoirs enabled greater accumulation of contaminants in sediments of the upstream reservoirs. This research gives strong support for the prevention of heavy metal contamination and the sustainability of water resources under the running condition of cascade reservoirs on such a large international river (the Lancang-Mekong River).
اظهر المزيد [+] اقل [-]The hydropower myth
2020
Williams, Jessica M.
Hydropower has come to be treated as synonymous with sustainable economic development by many in the development arena. This is despite the adverse ecological and sociological impacts being widely recognised by those outside of decision-making. The prevalence of this ‘hydropower myth’ simplifies the complex trade-offs involved within hydropower development and often leads to inequitable situations and ecological damage. The Mekong River is used to demonstrate the strength of the hydropower myth—the disconnect with the social and ecological realities of the basin, and emerging and potential negative consequences. The attractiveness of the hydropower myth to decision-makers and developers is shown to lie largely in its political utility in bolstering national power and legitimacy as well as its ability to channel economic benefits towards states and developers.
اظهر المزيد [+] اقل [-]Remarks on the current quality of groundwater in Vietnam
2019
Le Luu, Tran
This paper reviews the current quality of groundwater in Vietnam. In Vietnam, groundwater is obtained primarily from tubewells, which have high concentrations of pollutants such as As, Fe, Mn, and NH₄⁺. In the areas where groundwater tests were conducted, arsenic levels ranged from 0.1–3050 μg/L, which substantially exceed the standard of 10 μg/L which has been established by the WHO. Contamination sources are distributed over a large area from the Red River Delta in the north to the Mekong River Delta in the south, putting as many as ten million people at risk of adverse health effects. Levels of arsenic and iron in sediment are strongly correlated, which indicate that the presence of arsenic in groundwater results from the reduction of arsenic bound to iron oxyhydroxides. It is important to raise awareness of these issues among the Vietnamese public by disseminating information about the negative effects of contaminated drinking water, as well as carrying out long-term research projects to identify other sources of contamination and improving water treatment technology and water management capabilities.
اظهر المزيد [+] اقل [-]Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces
2015
Chau, N. D. G. | Sebesvari, Z. | Amelung, W. | Renaud, F. G.
Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L⁻¹), fenobucarb (max. 2.32 μg L⁻¹), and fipronil (max. 0.41 μg L⁻¹) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at concentrations exceeding the European Commission’s parametric guideline values for individual or total pesticides in drinking water (0.1 and 0.5 μg L⁻¹; respectively). The highest total pesticide concentration quantified in bottled water samples was 1.38 μg L⁻¹. Overall, we failed to identify a clean water source in the Mekong Delta with respect to pesticide pollution. It is therefore urgent to understand further and address drinking water-related health risk issues in the region.
اظهر المزيد [+] اقل [-]