خيارات البحث
النتائج 1 - 10 من 54
Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England) النص الكامل
2010
Tipping, E. | Rothwell, J.J. | Shotbolt, L. | Lawlor, A.J.
Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters.
اظهر المزيد [+] اقل [-]Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: Divergent results of field and laboratory tests النص الكامل
2010
Wilkie, Emma M. | Roach, Anthony C. | Micevska, Tina | Kelaher, Brendan P. | Bishop, Melanie J.
Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300™ in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment.
اظهر المزيد [+] اقل [-]Effect of metal accumulation on metallothionein level and condition of the periwinkle Littorina littorea along the Scheldt estuary (the Netherlands) النص الكامل
2010
Broeck, Heidi van den | Wolf, Hans De | Backeljau, Thierry | Blust, Ronny
Metal (i.e. Ag, As, Ca, Cd, Co, Cu, Mn, Pb and Zn) and metallothionein (MT) concentrations in the soft tissue of Littorina littorea were measured along the heavily polluted Western Scheldt (WS) and relatively clean Eastern Scheldt (ES) estuary. Along the WS metal and MT levels in periwinkles reflected the known downstream decreasing pollution gradient. Surprisingly in ES animals As, Mn and Zn concentrations decreased from east to west reflecting past pollution. Compared to the WS metal concentrations of ES periwinkles were significantly lower and both estuaries were maximally discriminated from each other based on their Cd soft tissue concentration using a canonical discriminant analysis. Furthermore, no overall difference was found in MT levels among animals from both estuaries. Using previously obtained condition data (i.e. dry/wet weight ratio and lipid content) the relation between soft tissue metal concentration (i.e. Cd, Cu and Zn) and fitness indicators (i.e. MT and condition data) was examined using a canonical correlation analysis. Periwinkles with a high metal load (i.e. Cd and Zn) also had high MT levels but were in a relatively poor condition.
اظهر المزيد [+] اقل [-]Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal) النص الكامل
2010
Duarte, B. | Caetano, M. | Almeida, P.R. | Vale, C. | Caçador, I.
Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root.
اظهر المزيد [+] اقل [-]Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations النص الكامل
2010
Bradac, Philippe | Wagner, Bettina | Kistler, David | Traber, Jacqueline | Behra, Renata | Sigg, Laura
Accumulation of cadmium in periphyton was investigated under field conditions while Cd concentration and speciation were dynamically varying in a small stream during rain events. Speciation in water was determined in situ by diffusion gradient in thin-films (DGT) and by modeling of complexation with fulvic acids. During the rain events, dissolved Cd concentrations increased from 0.17 nM to 0.27–0.36 nM, and 70–97% were DGT-labile. Cd content in periphyton closely followed Cd concentrations in water, despite higher concentrations of Zn and Mn, and may be controlled by either free or DGT-labile Cd concentrations. Decrease of Cd content in periphyton after the rain events was slower than the decrease of Cd concentration in water. Concentrations of Zn, Mn, Cu, Pb and Fe in periphyton also followed the dynamic variations of metal concentrations in water. Repeated exposure of periphyton to elevated dissolved Cd may lead to Cd accumulation. Cadmium accumulation in periphyton was examined in a small stream during rain events in relation to Cd speciation.
اظهر المزيد [+] اقل [-]Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico النص الكامل
2010
Pilar Ortega-Larrocea, María del | Xoconostle-Cázares, Beatriz | Maldonado-Mendoza, Egnacio E. | Carrillo González, Rogelio | Hernández-Hernández, Jani | Díaz Garduño, Margarita | López-Meyer, Melina | Gómez-Flores, Lydia | González-Chávez, Ma. del Carmen A.
Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use.
اظهر المزيد [+] اقل [-]Bioaccumulation and depuration of metals in blue crabs (Callinectes sapidus Rathbun) from a contaminated and clean estuary النص الكامل
2010
Reichmuth, Jessica M. | Weis, Peddrick | Weis, Judith S.
Blue crabs from a contaminated estuary (Hackensack Meadowlands-HM) and a cleaner reference site (Tuckerton-TK) were analyzed for Cr, Cu, Hg, Pb, and Zn in muscle and hepatopancreas. Crabs from each site were taken into the laboratory and fed food from the other site, or in another experiment, transplanted to the other site for eight weeks. All crabs were analyzed for metals. Overall, tissue concentrations reflected environmental conditions. Tissue differences were found for Cu, Pb and Zn (all higher in hepatopancreas), and Hg (higher in muscle). HM muscle had more Hg than TK muscle, but did not decrease after transplanting or consuming clean food. HM crabs lost Cu, Pb and Zn in hepatopancreas after being fed clean food or transplanted. TK crabs increased Hg in muscle and Cr and Zn in hepatopancreas after transplantation or being fed contaminated (HM) food. Concentrations were variable, suggesting that blue crabs may not be fully reliable bioindicators of polluted systems. The accumulation of metals within the muscle and hepatopancreas of blue crabs was highly variable, but often followed environmental concentrations.
اظهر المزيد [+] اقل [-]Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil النص الكامل
2010
Salati, S. | Quadri, G. | Tambone, F. | Adani, F.
In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6× than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals.
اظهر المزيد [+] اقل [-]Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition النص الكامل
2010
Ruttens, A. | Adriaensen, K. | Meers, E. | Vocht, A De | Geebelen, W. | Carleer, R. | Mench, M. | Vangronsveld, J.
Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition النص الكامل
2010
Ruttens, A. | Adriaensen, K. | Meers, E. | Vocht, A De | Geebelen, W. | Carleer, R. | Mench, M. | Vangronsveld, J.
A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability.
اظهر المزيد [+] اقل [-]Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition النص الكامل
2010
Ruttens, A. | Adriaensen, K. | Meers, E. | de Vocht, A. | Geebelen, W. | Carleer, R. | Mench, Michel | Vangronsveld, A. | Centre for Environmental Sciences ; Hasselt University (UHasselt) | Universiteit Gent = Ghent University = Université de Gand (UGENT) | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)
International audience | A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability. In a soil column leaching experiment, simulating 26 years of rainfall, application of cyclonic ashes resulted in a more durable metal immobilization compared to lime.
اظهر المزيد [+] اقل [-]Interactions between plant and rhizosphere microbial communities in a metalliferous soil النص الكامل
2010
Epelde, Lur | Becerril, José M. | Barrutia, Oihana | González-Oreja, José A. | Garbisu, Carlos
In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems.
اظهر المزيد [+] اقل [-]