خيارات البحث
النتائج 1 - 10 من 428
Review on the use of Microalgae Biomass for Bioplastics Synthesis: A Sustainable and Green approach to control Plastic Pollution النص الكامل
2022
Nandal, Meenakshi | Khyalia, pradeep | Ghalawat, Anu | Jugiani, Himani | Kaur, Manpreet | Laura, Jitender
Worldwide there is an immense demand for plastic material that results in “white pollution”. Petrochemical-based plastic is used all over the world which leads to adverse impacts on every sphere of the earth. However, many steps have been taken to control this plastic pollution globally, such as chemical treatments, plastic waste incineration, sanitary landfilling, and 7 R programs. Still, plastic pollution is one of the major international problems. Non-biodegradable plastic would not eradicate from our environment until we have an economically feasible and more biodegradable substitute. In recent years algae, especially microalgae, have got attention worldwide, owing to their various applications. Microalgae is one of the sustainable ways of bioplastic synthesis as during cultivation it also purifies wastewater. This review paper has summarized various species of microalgae used for the synthesis of bioplastic, their cultivation system, and methods for bioplastic production by using microalgae biomass, followed by multiple challenges, solutions, and future prospects.
اظهر المزيد [+] اقل [-]Effect of Dilution on Nitrogen Removal from Ammonia Plant Effluent using Chlorella vulgaris and Spirulina platensis النص الكامل
2021
Safari, Jaber | Abolghasemi, Hossein | Esmaili, Mohammad | Delavari Amrei, Hossein | Pourjamshidian, Reza
In this study, the removal of nitrogen from effluent of ammonia plant by Chlorella vulgaris and Spirulina platensis was investigated. For this purpose, microalgae were cultivated in three diluting percentage of the wastewater (1, 3, and 5%) at 29±1 ◦C and light intensity at surface of culture were adjusted to 150 µmol photon / (m2. s). The results showed that Spirulina platensis is more capable than Chlorella vulgaris to grow in high levels of total nitrogen concentration. Also, maximum biomass production rate happened in 1% diluted samples for Chlorella vulgaris and 3% for Spirulina platensis. Furthermore, Chlorella vulgaris reduce total nitrogen concentration up to 55%. This value for Spirulina platensis was about 96%. However, for both species the removal of nitrogen in 1% diluted wastewater was maximum. According to the results of diluted wastewater of ammonia plant, it is a suitable culture medium for microalgae and it can be used to remove the nitrogen before entering the wastewater in nature.
اظهر المزيد [+] اقل [-]Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense النص الكامل
2022
Zhang, Jiazhu | Kong, Lingwei | Zhao, Yan | Lin, Qingming | Huang, Shaojie | Jin, Yafang | Ma, Zengling | Guan, Wanchun
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L⁻¹) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRₘₐₓ, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRₘₐₓ, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L⁻¹) and high MP (10 mg L⁻¹) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
اظهر المزيد [+] اقل [-]Ecotoxicity of plant extracts and essential oils: A review النص الكامل
2022
Ferraz, Celso Afonso | Pastorinho, M Ramiro | Palmeira-de-Oliveira, Ana | Sousa, Ana C.A.
Plant-based products such as essential oils and other extracts have been used for centuries due to their beneficial properties. Currently, their use is widely disseminated through a variety of industries and new applications are continuously emerging. For these reasons, they are produced industrially in large quantities and consequently they have the potential to reach the environment. However, the potential effects that these products have on the ecosystems’ health are mostly unknown. In recent years, the scientific community started to focus on the possible toxic effects of essential oils and plant extracts towards non-target organisms. As a result, an increasing body of knowledge has emerged. This review describes the current state of the art on the toxic effects that essential oils and plant extracts have towards organisms from different trophic levels, including producers, primary consumers, and secondary consumers. The majority of the studies (76.5%) focuses on the aquatic environment, particularly in aquatic invertebrates (45.1%) with only 23.5% of the studies focusing on the potential toxicity of plant-derived products on terrestrial ecosystems.While some essential oils and extracts have been described to have no toxic effects to the selected organisms or the toxic effects were only observable at high concentrations, others were reported to be toxic at concentrations below the limit set by international regulations, some of them at very low concentrations. In fact, L(E)C₅₀ values as low as 0.0336 mg.L⁻¹, 0.0005 mg.L⁻¹ and 0.0053 mg.L⁻¹ were described for microalgae, crustaceans and fish, respectively. Generally, essential oils exhibit higher toxicity than extracts. However, when the extracts are obtained from plants that are known to produce toxic metabolites, the extracts can be more toxic than essential oils.Overall, and despite being generally considered “eco-friendly” products and safer than they synthetic counterparts, some essential oils and plant extracts are toxic towards non-target organisms. Given the increasing interest from industry on these plant-based products further research using international standardized protocols is mandatory.
اظهر المزيد [+] اقل [-]Effects of methanol, sodium citrate, and chlorella powder on enhanced anaerobic treatment of coal pyrolysis wastewater النص الكامل
2022
Shi, Jingxin | Wan, Ning | Han, Hongjun
To better promote environment friendly development of the coal chemical industry, this study investigated effects of methanol, sodium citrate, and chlorella powder (a type of microalgae) as co-metabolic substances on enhanced anaerobic treatment of coal pyrolysis wastewater with anaerobic sludge. The anaerobic sludge was loaded into four 2 L anaerobic reactors for co-metabolism enhanced anaerobic experiments. Anaerobic reactor 1 (R1) as control group did not add a co-metabolic substance; anaerobic reactor 2 (R2) added methanol; anaerobic reactor 3 (R3) added sodium citrate; and anaerobic reactor 4 (R4) added chlorella powder. In the blank control group, the removal ratios of total phenol (TPh), quinoline, and indole were only 12.07%, 42.15%, and 50.47%, respectively, indicating that 50 mg/L quinoline, 50 mg/L indole, and 600 mg/L TPh produced strong toxicity inhibition function on the anaerobic microorganism in reactor. When the concentration of methanol, sodium citrate, and chlorella was 400 μg/L, the reactors with co-metabolic substances had better treatment effect on TPh. Among them, the strengthening effects of sodium citrate (TPh removal ratio: 44.87%) and chlorella (47.85%) were better than that of methanol (38.72%) and the control group (10.62%). Additionally, the reactors with co-metabolic substances had higher degradation ratios on quinoline, indole, and chemical oxygen demand (COD). The data of extracellular polymeric substances showed that with the co-metabolic substances, anaerobic microorganisms produced more humic acids by degrading phenols and nitrogen-containing heterocyclic compounds (NHCs). Compared with the control group, the reactors added with sodium citrate and chlorella had larger average particle size of sludge. Thus, sodium citrate and chlorella could improve sludge sedimentation performance by increasing the sludge particle size. The bacterial community structures of reactors were explored and the results showed that Aminicenantes genera incertae sedis, Levinea, Geobacter, Smithella, Brachymonas, and Longilinea were the main functional bacteria in reactor added with chlorella.
اظهر المزيد [+] اقل [-]The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms النص الكامل
2021
Jacob, Raquel Sampaio | Araújo, Cristiano V.M. | Santos, Lucilaine Valéria de Souza | Moreira, Victor Rezende | Lebron, Yuri Abner Rocha | Lange, Liséte Celina
The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms النص الكامل
2021
Jacob, Raquel Sampaio | Araújo, Cristiano V.M. | Santos, Lucilaine Valéria de Souza | Moreira, Victor Rezende | Lebron, Yuri Abner Rocha | Lange, Liséte Celina
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC₅₀: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels.
اظهر المزيد [+] اقل [-]The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms النص الكامل
2021
Sampaio Jacob, Raquel | Araújo, Cristiano V. M. | Santos, Lucilaine Valéria Souza de | Rezende Moreira, Victor | Rocha Lebron, Yuri Abner | Lamge, Liséte Celina | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil) | Conselho Nacional das Fundaçôes Estaduais de Amparo à Pesquisa (Brasil) | Fundação de Amparo à Pesquisa do Estado de São Paulo Minas Gerais | Universidade Federal de Minas Gerais | Ministerio de Ciencia, Innovación y Universidades (España) | Agencia Estatal de Investigación (España) | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC50: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels. | This research was funded by: Coordination of Superior Level Staff Improvement (CAPES); National Council for Scientific and Technological Development (CNPq); Foundation for Research Support of the State of Minas Gerais (FAPEMIG) and the Federal University of Minas Gerais (UFMG). C.V.M. Araújo received the Ramón y Cajal contract (RYC-2017-22324) from the Spanish Ministry of Science and Innovation. | Peer reviewed
اظهر المزيد [+] اقل [-]Freshwater phytoplankton: Salinity stress on arsenic biotransformation النص الكامل
2021
Papry, Rimana Islam | Fujisawa, Shogo | Zai, Yinghan | Akhyar, Okviyoandra | Mashio, Asami Suzuki | Hasegawa, Hiroshi
Salinity stress affects aquatic microalgal growth and their physiological responses have been studied extensively. However, arsenic (As) accumulation and biotransformation by freshwater phytoplankton under a salinity gradient have never been addressed. This study reports a distinctive pattern of As uptake, accumulation, and biotransformation by four axenic freshwater phytoplankton species, i.e., Scenedesmus acutus, Closterium aciculare, Staurastrum paradoxum, and Pediastrum duplex. Phytoplankton cells were incubated in sterilised C medium modified with varying salinity levels (0–5‰) in association with arsenate and phosphate concentrations. The biotransformation of arsenate (i.e., As(V)) to arsenite (As(III)) and to further methylated species decreased with increasing salinity in the culture medium whereas As accumulation increased. Among the four strains, only S. acutus and S. paradoxum converted As(V) to As(III), with no detected methylated species. In contrast, C. aciculare and P. duplex biotransformed As(V) to As(III) and further to methyl arsenic species, such as DMAA. S. acutus and S. paradoxum exhibited higher accumulation tendency than the other two species. S. paradoxum showed the lowest As reduction rate (i.e., As(V) to As(III)) compared to other species, although, without significant variations. The morphological changes were observed in phytoplankton cells in response to increased salinity stress. Moreover, As(V) concentrations in the culture medium significantly decreased by day 7–14. Thus, this study presents a conceptual model of the As biotransformation pattern by axenic freshwater phytoplankton.
اظهر المزيد [+] اقل [-]Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation النص الكامل
2021
Dayana Priyadharshini, Stephen | Suresh Babu, Palanisamy | Manikandan, Sivasubramanian | Subbaiya, Ramasamy | Govarthanan, Muthusamy | Karmegam, Natchimuthu
Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
اظهر المزيد [+] اقل [-]Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids النص الكامل
2021
Li, Na | Liu, Yu | Liang, Zhengyu | Lou, Yadi | Liu, Yuxin | Zhao, Xinda | Wang, Guoguang
It is highly likely that the toxicity of water accommodated fractions (WAF) will influence marine microalgae, and consequently lead to potential risk for the marine ecological environment. However, it was often neglected whether WAF can influence the transformation of relative compounds in organisms. The metabolism of amino acids (AAs) can be used to track physiological changes in microalgae because amino acids are the basis of proteins and enzymes. In this study, using marine Chlorophyta Platymonas helgolandica as the test organism, the effects of different concentrations of WAF on AA compositions and stable carbon isotope ratios (δ¹³C) of individual AAs of Platymonas helgolandica were investigated. The results showed that the WAF of #180 fuel oil had an obvious suppressing effect on the growth and chlorophyll a content of microalgae. The growth inhibitory rate at 96 h was 80.66% at a WAF concentration of 0.50 mg L⁻¹ compared with the control. Furthermore, seven among the 16 AAs, including alanine, cysteine, proline, aspartic acid, lysine, histidine and tyrosine, had relatively high abundance. Under the glycolysis pathway, the cysteine abundance was higher than control, meaning that the biosynthesized pathway of alanine through cysteine as a precursor could be damaged. Phosphoenolpyruvate (PEP) was an important synthesis precursor of alanine (leucine) and aromatic AA family (Phenylalanine and tyrosine), and played an important role in δ¹³CAAₛ fractionation under the WAF stress. Under the TCA pathway, to protect cell metabolism activities under WAF stress, the δ¹³C value of threonine and proline abundance in microalgae with the increase in WAF stress. Therefore, δ¹³CAAₛ fractionation can be used as a novel method for toxicity evaluation of WAF on future.
اظهر المزيد [+] اقل [-]Comparative responses of cell growth and related extracellular polymeric substances in Tetraselmis sp. to nonylphenol, bisphenol A and 17α-ethinylestradiol النص الكامل
2021
Yang, Qian | Xu, Weihao | Luan, Tiangang | Pan, Tianle | Yang, Lihua | Lin, Li
Estuarine ecosystems near mega-cities are sinks of anthropogenic endocrine disrupting chemicals (EDCs). As the most important primary producer, indigenous microalgae and their secreted extracellular polymeric substances (EPSs) might interact with EDCs and contribute to their fate and risk. Tetraselmis sp. is a representative model of estuarine microalga, for which EDC toxicity and its effects on EPS synthesis have rarely been studied. Through microalgal isolation, algal cell growth tests, EDC removal and the characterization of related EPS profiles, the present work intends to clarify the comparative responses of Tetraselmis sp. to nonylphenol (NP), bisphenol A (BPA) and 17α-ethinylestradiol (EE₂). The results showed that the half inhibitory concentration on cell growth was 0.190–0.313 mg/dm³ for NP, which was one order of magnitude lower than the comparable values for BPA and EE₂ at 2.072–3.254 mg/dm³. Regarding chlorophyll, NP induced its degradation, EE₂ led to its decreased production, and BPA had no obvious effect. Under EDC stress, only the concentrations of colloidal polysaccharides and proteins responded dose-dependently to EE₂. Except for the colloidal fraction in the EE₂ treatment group, the increase in neutral monosaccharides, especially glucose and galactose, was a common response to EDCs. Compared to the recalcitrant BPA, NP underwent abiotic degradation in alga-free water, and EE₂ could be biodegraded in water containing this microalga. The chemical-specific responses of cell growth, chlorophyll and related EPS profiles were driven by the different fates of EDCs, and the underlying mechanism was further discussed. The results obtained in the present work are of critical importance for understanding the fate and effects of different EDCs mediated by microalgae and their related EPSs.
اظهر المزيد [+] اقل [-]