خيارات البحث
النتائج 1 - 10 من 65
ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis النص الكامل
2022
Zhang, Lu | Yin, Wei | Shen, Siyi | Feng, Yuyun | Xu, Wenjie | Sun, Yunfei | Yang, Zhou
Under intensive human activity, sewage discharge causes eutrophication-driven cyanobacteria blooms as well as nanomaterial pollution. In biological control of harmful cyanobacteria, top-down effect of protozoan has great potentials for removing cyanobacterial populations, degrading cyanotoxins, and improving phytoplankton community. ZnO nanoparticles as a kind of emerging contaminants have attracted increasing attention because of wide application and their high bio-toxicity effects on reducing the ingestion of aquatic animals including Paramecium, thereby possibly disturbing top-down control of cyanobacteria. Therefore, this study investigated the effects of ZnO nanoparticles at environmental-relevant concentrations on the protozoan Paramecium removing toxic Microcystis. Results showed Paramecium effectively eliminated all the Microcystis, despite exposure to ZnO nanoparticles. However, their ingestion rate was significantly reduced at more than 0.1 mg L⁻¹ ZnO nanoparticles, thereby delaying Microcystis removal. Nevertheless, at 0.1 mg L⁻¹ ZnO nanoparticles, the time to Microcystis extinction decreased compared to the group without ZnO nanoparticles, because Microcystis populations were reduced under this circumstance, while ingestion rate of Paramecium was unaffected. Furthermore, ZnO nanoparticles obviously accumulated in food vacuoles of Paramecium, and the size of nanoparticles aggregates and zinc concentrations in Paramecium were increased with ZnO nanoparticles concentrations. At the end of experiment, these food vacuoles were not dissipated. Overall, these findings suggest that ZnO nanoparticles impair protozoan top-down effects through reducing Microcystis and ingestion rate as well as disturbing functions of their digestive organelles, and highlight the need to consider the interfering effects of environmental pollutants on cyanobacterial removal efficiency by protozoans in natural waters.
اظهر المزيد [+] اقل [-]Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms النص الكامل
2021
Wang, Kai | Mou, Xiaozhen | Cao, Huansheng | Struewing, Ian | Allen, Joel | Lu, Jingrang
Cyanobacterial harmful algal blooms (CyanoHABs) have been found to transmit from N₂ fixer-dominated to non-N₂ fixer-dominated in many freshwater environments when the supply of N decreases. To elucidate the mechanisms underlying such “counter-intuitive” CyanoHAB species succession, metatranscriptomes (biotic data) and water quality-related variables (abiotic data) were analyzed weekly during a bloom season in Harsha Lake, a multipurpose lake that serves as a drinking water source and recreational ground. Our results showed that CyanoHABs in Harsha Lake started with N₂-fixing Anabaena in June (ANA stage) when N was high, and transitioned to non-N₂-fixing Microcystis- and Planktothrix-dominated in July (MIC-PLA stage) when N became limited (low TN/TP). Meanwhile, the concentrations of cyanotoxins, i.e., microcystins were significantly higher in the MIC-PLA stage. Water quality results revealed that N species (i.e., TN, TN/TP) and water temperature were significantly correlated with cyanobacterial biomass. Expression levels of several C- and N-processing-related cyanobacterial genes were highly predictive of the biomass of their species. More importantly, the biomasses of Microcystis and Planktothrix were also significantly associated with expressions of microbial genes (mostly from heterotrophic bacteria) related to processing organic substrates (alkaline phosphatase, peptidase, carbohydrate-active enzymes) and cyanophage genes. Collectively, our results suggest that besides environmental conditions and inherent traits of specific cyanobacterial species, the development and succession of CyanoHABs are regulated by co-occurring microorganisms. Specifically, the co-occurring microorganisms can alleviate the nutrient limitation of cyanobacteria by remineralizing organic compounds.
اظهر المزيد [+] اقل [-]Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China النص الكامل
2021
Qiu, Pengfei | Chen, Youxin | Li, Chenjie | Huo, Da | Bi, Yonghong | Wang, Jianbo | Li, Yunchuang | Li, Renhui | Yu, Gongliang
Aquatic ecosystems and drinking water supply systems worldwide are increasingly affected by taste and odor episodes. In this study, molecular approaches including next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) were used to study the diversity and dynamics of cyanobacteria and 2-methylisoborneol (2-MIB)-producing cyanobacteria in Yuqiao Reservoir, a eutrophicated drinking water reservoir in Tianjin city, northern China. NGS revealed that the entire cyanobacterial community consisted of 16 genera, with Planktothrix (28.8%), Pseudanabaena (18.4%), Cylindrospermosis (7.8%), and Microcystis (7.6%) being the dominant genera, while microscopic examination identified only eight cyanobacterial genera. NGS of the 2-MIB synthesis gene revealed that Pseudanabaena and Planktothricoides were the main 2-MIB producers, with Pseudanabaena being dominant. This finding demonstrated that NGS can identify 2-MIB producers quickly and accurately and it can thus play an important role in the practical monitoring of aquatic ecology. The qPCR test showed 2-MIB synthesis gene with 4.27 × 10⁶ copies/L to 2.24 × 10⁹copies/L occurring at the three sampling sites. The mic gene copy number increased before the 2-MIB concentration increased, indicating that forecasting role in dealing with the 2-MIB concentration by gene copy number. Predicting 2-MIB by qPCR in the field must be verified with additional studies. The combination of NGS and qPCR can be an even more comprehensive method to provide early warning information to managers of reservoirs and water utilities facing taste and odor incidents. This is the first amplicon NGS dataset based on 2-MIB gene to study the diversity and dynamics of 2-MIB-producing cyanobacteria.
اظهر المزيد [+] اقل [-]Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin النص الكامل
2020
Wei, Jia | Xie, Xian | Huang, Feiyu | Xiang, Lin | Wang, Yin | Han, Tongrui | Massey, Isaac Yaw | Liang, Geyu | Pu, Yuepu | Yang, Fei
Microcystis blooms and their secondary metabolites microcystins (MCs) occurred all over the world, which have damaged aquatic ecosystems and threatened public health. Techniques to reduce the Microcystis blooms and MCs are urgently needed. This study aimed to investigate the algicidal and inhibitory mechanisms of a red pigment prodigiosin (PG) against the growth and MC-producing abilities of Microcystis aeruginosa (M. aeruginosa). The numbers of Microcystis cells were counted under microscope. The expression of microcystin synthase B gene (mcyB) and concentrations of MCs were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbent assay (ELISA) methods, respectively. The inhibitory effects of PG against M. aeruginosa strain FACHB 905 with 50% algicidal concentration (LC50) at 120 h was 0.12 μg/mL. When M. aeruginosa cells exposed to 0.08 μg/mL, 0.16 μg/mL, 0.32 μg/mL PG, the expression of mcyB of M. aeruginosa was down-regulated 4.36, 8.16 and 18.51 times lower than that of the control at 120 h. The concentrations of total MC (TMC) also were 1.66, 1.72 and 5.75 times lower than that of the control at 120 h. PG had high algicidal effects against M. aeruginosa, with the activities of superoxide dismutase (SOD) initially increased and then decreased after 72 h, the contents of malondialdehyde (MDA) increase, the expression of mcyB gene down-regulation, and MCs synthesis inhibition. This study was first to report the PG can simultaneously lyse Microcystis cells, down-regulate of mcyB expression and inhibit MCs production effectively probably due to oxidative stress, which indicated PG poses a great potential for regulating Microcystis blooms and MCs pollution in the environment.
اظهر المزيد [+] اقل [-]Temporal dynamics of microcystins in Limnodrilus hoffmeisteri, a dominant oligochaete of hypereutrophic Lake Taihu, China النص الكامل
2016
Xue, Qingju | Steinman, Alan D. | Su, Xiaomei | Zhao, Yanyan | Xie, Liqiang
We examined the bioaccumulation of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) in the oligochaete Limnodrilus hoffmeisteri from July 2013 through June 2014 in Lake Taihu, China. Environmental parameters and MCs in sediment, phytoplankton and water column also were examined. L. hoffmeisteri accumulated extremely high MC concentrations during the warmest months, with a maximum value of 11.99 μg/g (MC-LR: 1.76 μg/g, MC-RR: 2.51 μg/g, and MC-YR: 7.73 μg/g). Total MC concentrations in L. hoffmeisteri declined after October (2013) and began to increase in May (2014). Between July and October, MC-YR concentration was higher than MC-LR and MC-RR. MC concentrations in L. hoffmeisteri were positively correlated with pH, water temperature, conductivity, chlorophyll a, nitrite and the biomass of Microcystis, and negatively correlated with dissolved oxygen (DO), nitrate, total nitrogen (TN), dissolved total inorganic carbon and the biomass of Bacillariophyta. In addition, MCs in phytoplankton were more strongly correlated with MCs in L. hoffmeisteri than in the water column or sediment. Our results demonstrated that L. hoffmeisteri could accumulate high MC concentrations in the bloom season, which might transfer to the edible zoobenthos and fish through trophic transfer, thereby posing a significant health threat to humans.
اظهر المزيد [+] اقل [-]Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water النص الكامل
2021
Xu, Sijia | Jiang, Yunhan | Liu, Ying | Zhang, Jian
Antibiotics can stimulate the growth of model cyanobacterial species under pure culture conditions, but their influence on cyanobacterial blooms in natural aquatic ecosystems remains unclear. In this study, three commonly detected antibiotics (sulfamethoxazole, tetracycline, and ciprofloxacin) and their ternary mixture were proved to selectively stimulate (p < 0.05) the growth and photosynthetic activity of cyanobacteria in an aquatic microcosm at an environmentally relevant exposure dose of 300 ng/L under both oligotrophic and eutrophic conditions. Under the eutrophic condition, cyanobacteria reached a bloom density of 1.61 × 10⁶ cells/mL in 15 days without antibiotics, while the cyanobacteria exposed to tetracycline, sulfamethoxazole, ciprofloxacin, and their ternary mixture exceeded this bloom density within only 10, 8, 7, and 6 days, respectively. Principal coordinate analysis indicated that the antibiotic contaminants accelerated the prokaryotic community succession towards the formation of a cyanobacterial bloom by promoting the dominance of Microcystis, Synechococcus, and Oscillatoria under the eutrophic condition. After 15 days of culture, the antibiotic exposure increased the density of cyanobacteria by 1.38–2.31-fold and 2.28–3.94-fold under eutrophic and oligotrophic conditions, respectively. Antibiotic exposure generated higher stimulatory effects on cyanobacterial growth under the oligotrophic condition, but the antibiotic(s)-treated cyanobacteria did not form a bloom due to nutrient limitation. Redundancy analysis indicated that the three target antibiotics and their ternary mixture affected the prokaryotic community structure in a similar manner, while tetracycline showed some differences compared to sulfamethoxazole, ciprofloxacin, and the ternary antibiotic mixture with regard to the regulation of the eukaryotic community structure. This study demonstrates that antibiotic contaminants accelerate the formation of cyanobacterial blooms in eutrophic lake water and provides insights into the ecological effects of antibiotics on aquatic microbial communities.
اظهر المزيد [+] اقل [-]Elevated temperature and toxic Microcystis reduce Daphnia fitness and modulate gut microbiota النص الكامل
2021
Akbar, Siddiq | Huang, Jing | Zhou, Qiming | Gu, Lei | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The gut microbiota has been increasingly recognized to regulate host fitness, which in turn is dependent on stability of community structure and composition. Many biotic and abiotic factors have been demonstrated to shape gut microbiota of cladocerans. However, the interactive effects of these variables on cladocerans fitness due to alteration of gut microbiota and their linkage with life history parameters are poorly understood. Here, we investigated the responses of Daphnia magna gut microbiota to the combined effects of toxic Microcystis aeruginosa and high temperature and its associations with fitness. We found that under good food regime, the temperature has no effect on the composition of the gut microbiota, whereas under high proportion of toxic M. aeruginosa and high temperature conditions, D. magna lost their symbionts. High proportion of toxic M. aeruginosa and high temperature had synergistically negative effects on D. magna performance due to altered gut microbiota. The high abundance of symbiotic Comamonadaceae and good food increased D. magna fitness. The present study illustrates that understanding life history strategies in response to multiple stressors related to changes in the gut microbiota diversity and composition requires integrated approaches that incorporate multiple linked traits and tether them to one another.
اظهر المزيد [+] اقل [-]Comparative growth and cellular responses of toxigenic Microcystis exposed to different types of microplastics at various doses النص الكامل
2021
Wan, Qianruo | Li, Jieming | Chen, Yanran
Microplastics (MPs) pollution frequently co-occur with Microcystis-dominated blooms in freshwaters, but MPs effects on toxigenic Microcystis growth and effect mechanisms remained poorly understood. This study used 0.5 μm-size polyethylene (PE) and polyvinyl chloride (PVC) to explore dose- and time-dependent effects of single and combined MPs (i.e., PE + PVC) on toxigenic Microcystis growth and cellular responses during 16 day-test. Results showed that Microcystis growth and cellular responses depended on exposure time, MPs dose and type. MPs elicited hormesis effect in early stage at low dose (5 mg/L), while increasingly inhibited growth with rising PVC or PE + PVC dose but declining PE dose (5, 10, 50 mg/L) in mid-late stage, with stress intensity of PE + PVC > PVC > PE. Further analyses revealed unobvious cell damage under MPs stress, largely because antioxidases were increasingly activated as MPs stress enhanced. Unicellular MCs release ability during mid stage almost coincided with total/bound amount and each fraction of ex-poly and ex-pro trends under MPs stress. Significant positive relationship existed between MCs release ability and ex-poly/ex-pro fractions and total amount of Microcystis cells along mid-late stage under MPs stress, validating that ex-poly/ex-pro production was regulated as a result of MCs release. Besides, unicellular MCs production ability was generally positively correlated with soluble, tightly-bound and total ex-poly and ex-pro at late stage. These suggested that cellular antioxidants, MCs production/release ability and ex-poly/ex-pro production of Microcystis could be coupled to exert integrated defense against MPs stress to protect surviving cells in Microcystis population. These findings are crucial for acquiring the fate of Microcystis-dominated blooms co-occurring with MPs pollution, and reasonably assessing and managing involved eco-risks.
اظهر المزيد [+] اقل [-]Farmed tilapia as an exposure route to microcystins in Zaria-Nigeria: A seasonal investigation النص الكامل
2021
Chia, Mathias Ahii | Abdulwahab, Rabiu | Ameh, Ilu | Balogun, J Kolawole | Auta, Jehu
Several studies have reported the contamination of farmed fish by microcystins, however, alternations in levels of contamination resulting from seasonal changes are infrequently described. This investigation is focused on the seasonal accumulation of microcystins in farmed Nile Tilapia muscle tissue across three farms located in Zaria, Nigeria, as a means of assessing the health risks associated with the consumption of contaminated fish. Total microcystins and cyanobacteria content, respectively, in muscle tissue and gut of tilapia varied, seasonally in the farms. Microcystin levels were higher in fish tissues analyzed in the dry season than the rainy season at Nagoyi and Danlami ponds. Correlating with the levels of microcystins found in fish tissues, the highest dissolved microcystins levels in all the fish farms occurred in the dry season, where the Bal and Kol fish farm had the highest concentration (0.265 ± 0.038 μgL⁻¹). Gut analysis of fish obtained from the ponds, revealed a predominance of Microcystis spp. among other cyanobacteria. Estimation of total daily intake of consumed contaminated Nile tilapia muscles reveal values exceeding WHO recommended (0.04 μg kg⁻¹ body weight) total daily intake of MC-LR. Consumption of tilapia from Danlami pond presented the greatest risk with a value of 0.093 μg kg⁻¹ total daily intake. Results of the present study necessitate the implementation of legislation and monitoring programs for microcystins and other cyanobacteria contaminants of fish obtained from farms and other sources in Zaria and indeed several other African countries.
اظهر المزيد [+] اقل [-]Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa النص الكامل
2020
He, Yixin | Ma, Jianrong | Joseph, Vanderwall | Wei, Yanyan | Liu, Mengzi | Zhang, Zhaoxue | Li, Guo | He, Qiang | Li, Hong
Potassium (K⁺) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K⁺ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K⁺ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K⁺, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K⁺ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K⁺ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K⁺ availability can regulate the physiological metabolic activity of M. aeruginosa and K⁺ deficiency leads to depressed growth and MC production in M. aeruginosa.
اظهر المزيد [+] اقل [-]