خيارات البحث
النتائج 1 - 10 من 206
Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils النص الكامل
2020
Oliver, Danielle P. | Li, Yasong | Orr, Ryan | Nelson, Paul | Barnes, Mary | McLaughlin, Michael (Michael J.) | Kookana, Rai S.
The sorption behaviour of three perfluoroalkyl substances (PFASs), namely perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS), was determined on 28 tropical soils. Tropical soils are often highly weathered, richer in sesquioxides than temperate soils and may contain variable charge minerals. There are little data on sorption of PFASs in tropical soils. The highest Kd values were found for PFOS with mean values ranging from 0 to 31.6 L/kg. The Kd values for PFOA and PFHxS ranged from 0 to 4.9 L/kg and from 0 to 5.6 L/kg, respectively. While these values are in the range of literature sorption data, the average Kd values for PFOS and PFOA from the literature were 3.7 times and 3.6 times higher, respectively, than those measured in this study. Stepwise regression analysis did explain some of the variance, but with different explanatory variables for the different PFASs. The main soil properties explaining sorption for PFOS and PFOA were oxalate-extractable Al and pH, and for PFHxS was pH.
اظهر المزيد [+] اقل [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
اظهر المزيد [+] اقل [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain)
Concentration of uranium in the soils of the west of Spain النص الكامل
2018
Santos-Francés, Fernando | Gil Pacheco, Elena | Martínez-Graña, Antonio | Alonso Rojo, Pilar | Ávila Zarza, Carmelo | García Sánchez, Antonio
While determining the uranium concentration in the rock (background level) and soils on the Iberian Massif of western Spain, several geochemical anomalies were observed. The uranium concentration was much higher than the geochemical levels at these locations, and several uranium minerals were detected. The proposed uranium background levels for natural soils in the west of Salamanca Province (Spain) are 29.8 mg kg−1 in granitic rock and 71.2 mg kg−1 in slate. However, the soil near the tailings of abandoned mines exhibited much higher concentrations, between 207.2 and 542.4 mg kg−1.The calculation of different pollution indexes (Pollution Factor and Geo-accumulation Index), which reveal the conditions in the superficial horizons of the natural soils, indicated that a good percentage of the studied samples (16.7–56.5%) are moderately contaminated. The spatial distribution of the uranium content in natural soils was analysed by applying the inverse distance weighted method.The distribution of uranium through the horizons of the soils shows a tendency to accumulate in the horizons with the highest clay content. The leaching of uranium from the upper horizons and accumulation in the lower horizons of the soil could be considered a process for natural attenuation of the surface impacts of this radiogenic element in the environment. Environmental restoration is proposed in the areas close to the abandoned mining facilities of this region, given the high concentration of uranium. First, all the tailings and other mining waste would be covered with a layer of impermeable material to prevent leaching by runoff. Then, a layer of topsoil with organic amendments would be added, followed by revegetation with herbaceous plants to prevent surface erosion.
اظهر المزيد [+] اقل [-]Magnetic susceptibility of spider webs as a proxy of airborne metal pollution النص الكامل
2018
Rachwał, Marzena | Rybak, Justyna | Rogula-Kozłowska, Wioletta
The purpose of this pilot study was to test spider webs as a fast tool for magnetic biomonitoring of air pollution. The study involved the investigation of webs made by four types of spiders: Pholcus phalangioides (Pholcidae), Eratigena atrica and Agelena labirynthica (Agelenidae) and Linyphia triangularis (Linyphiidae). These webs were obtained from outdoor and indoor study sites. Compared to the clean reference webs, an increase was observed in the values of magnetic susceptibility in the webs sampled from both indoor and outdoor sites, which indicates contamination by anthropogenically produced pollution particles that contain ferrimagnetic iron minerals. This pilot study has demonstrated that spider webs are able to capture particulate matter in a manner that is equivalent to flora-based bioindicators applied to date (such as mosses, lichens, leaves). They also have additional advantages; for example, they can be generated in isolated clean habitats, and exposure can be monitored in indoor and outdoor locations, at any height and for any period of time. Moreover, webs are ubiquitous in an anthropogenic, heavily polluted environment, and they can be exposed throughout the year. As spider webs accumulate pollutants to which humans are exposed, they become a reliable source of information about the quality of the environment. Therefore, spider webs are recommended for magnetic biomonitoring of airborne pollution and for the assessment of the environment because they are non-destructive, low-cost, sensitive and efficient.
اظهر المزيد [+] اقل [-]Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler النص الكامل
2018
Fu, Biao | Liu, Guijian | Sun, Mei | Hower, James C. | Mian, Md Manik | Wu, Dun | Wang, Ruwei | Hu, Guangqing
Emission of hazardous trace elements (HTEs) from energy production is receiving much attention due to concerns about the toxicity to the ecosystem and human health. This study presented new field measurement data on the HTEs partitioning behavior and size-segregated elemental compositions of gaseous particular matter (PM) generated from a commercial circulating fluidized bed (CFB) power plant. Mineralogical and morphological characteristics of combustion ash and PM2.5 (particle diameter less than 2.5 μm) were determined by X-ray diffractometer (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). Functional groups alteration during CFB combustion was characterized by Fourier transform infrared spectroscopy (FTIR). The presence of aliphatic hydrogen at 2910 cm−1 and 2847 cm−1 in the PM2.5 suggested that the aliphatic carbon-rich volatiles were absorbed on the fine particles with large surface area. Fine fly ash (PM2.5) occurred as irregular glass particles or/and as unburned carbon. The typical irregular particles were mainly composed of Al-Si-Ca or Al-Si-Fe phases. The enrichment behavior of HTEs was determined for the airborne size-segregated particular matter. Elemental occurrences, combustion temperature, unburnt carbon, and limestone additives during CFB combustion were critical in the transformation behavior of HTEs. The total potentially mobile pollutants that exit the CFB power plant every year were estimated as follows: 0.22 tons of Cr, 0.12 tons of Co, 0.73 tons of Ni, 0.04 tons of As, 0.07 tons of Se, 3.95 kg of Cd, and 3.34 kg of Sb.
اظهر المزيد [+] اقل [-]Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides النص الكامل
2018
Nieva, N Eugenia | Borgnino, Laura | García, M Gabriela
Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides النص الكامل
2018
Nieva, N Eugenia | Borgnino, Laura | García, M Gabriela
The sulphide-rich mine wastes accumulated in tailing dumps of La Concordia Mine (Puna of Argentina) have been exposed to the weathering action for more than 30 years. Since then, a series of redox reactions have triggered the generation of a highly acidic drainage -rich in dissolved metals-that drains into the La Concordia creek. The extent of metal and acid release in the site was analysed through field surveys and laboratory experiments. Static tests were conducted in order to predict the potential of the sulphidic wastes to produce acid, while Cu-, Zn-, Fe- and Pb-bearing phases present in the wastes were identified by XRD, SEM/EDS analysis and sequential extraction procedures. Finally, the release of these metals during sediment-water interaction was assessed in batch experiments carried out in a period of nearly two years. Field surveys indicate that the prolonged alteration of the mine wastes led to elevated electrical conductivity, pH values lower than 4 and metal concentrations that exceed the guide values for drinking water in the La Concordia stream regardless of the dominating hydrological conditions. The highly soluble Fe and Mg (hydrous)sulphates that form salt crusts on the tailings surfaces and the riverbed sediments play an important role in the control of metal mobility, as they rapidly dissolve in contact with water releasing Fe, but also Cu and Zn which are scavenged by such minerals. Another important proportion of the analysed metals is adsorbed onto Fe (hydr)oxides or form less soluble hydroxysulfates. Metals present in these phases are released to water more slowly, thus representing a potential long term source of heavy metal pollution. The obtained results are a contribution to the understanding of long term metal transformations and mobility in mine waste-impacted sites.
اظهر المزيد [+] اقل [-]Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides
Photo- and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication النص الكامل
2017
Yin, Yongguang | Xu, Wei | Tan, Zhiqiang | Li, Yanbin | Wang, Weidong | Guo, Xiaoru | Yu, Sujuan | Liu, Jingfu | Jiang, Guibin
AgCl and Ag2S prevalently exist in the environment as minerals and/or the chlorination and sulfidation products of ionic silver and elemental silver nanoparticles (AgNPs). In this work, we investigated the chemical transformation of AgCl and Ag2S under simulated sunlight (in water) and incineration (in sludge and simulated municipal solid waste, SMSW). In the presence of natural organic matter, AgCl in river water was observed to be transformed into AgNPs under simulated sunlight, while photo-reduction of Ag2S could not take place under the same experimental conditions. During the course of incineration, pure Ag2S was transformed into elemental silver while AgCl remained stable; however, both Ag2S in sludge and AgCl in SMSW can be transformed to elemental silver under incineration, evident by the results of X-ray absorption spectroscopy and scanning electron microscopy measurements. Incineration temperature played an important role in the transformation of Ag2S and AgCl into elemental silver. These results suggest that chemical transformations of Ag2S and AgCl into elemental silver could be a possible source of naturally occurring or unintentionally produced AgNPs, affecting the fate, transport, bioavailability and toxicity of silver. Therefore, it is necessary to include the contributions of this transformation process when assessing the risk of ionic silver/AgNPs and the utilization and management of incineration residues.
اظهر المزيد [+] اقل [-]Environmental exposure to TiO2 nanomaterials incorporated in building material النص الكامل
2017
Bossa, Nathan | Chaurand, Perrine | Levard, Clément | Borschneck, Daniel | Miche, Hélène | Vicente, Jérôme | Geantet, Christophe | Aguerre-Chariol, Olivier | Michel, F Marc | Rose, Jerome
Environmental exposure to TiO2 nanomaterials incorporated in building material النص الكامل
2017
Bossa, Nathan | Chaurand, Perrine | Levard, Clément | Borschneck, Daniel | Miche, Hélène | Vicente, Jérôme | Geantet, Christophe | Aguerre-Chariol, Olivier | Michel, F Marc | Rose, Jerome
Nanomaterials are increasingly being used to improve the properties and functions of common building materials. A new type of self-cleaning cement incorporating TiO2 nanomaterials (TiO2-NMs) with photocatalytic properties is now marketed. This promising cement might provide air pollution-reducing properties but its environmental impact must be validated. During cement use and aging, an altered surface layer is formed that exhibits increased porosity. The surface layer thickness alteration and porosity increase with the cement degradation rate. The hardened cement paste leaching behavior has been fully documented, but the fate of incorporated TiO2-NMs and their state during/after potential release is currently unknown. In this study, photocatalytic cement pastes with increasing initial porosity were leached at a lab-scale to produce a range of degradation rates concerning the altered layer porosity and thickness. No dissolved Ti was released during leaching, only particulate TiO2-NM release was detected. The extent of release from this batch test simulating accelerated worst-case scenario was limited and ranged from 18.7 ± 2.1 to 33.5 ± 5.1 mg of Ti/m2 of cement after 168 h of leaching. TiO2-NMs released into neutral aquatic media (simulate pH of surface water) were not associated or coated by cement minerals. The TiO2-NM release mechanism is suspected to start from freeing of TiO2-NMs in the altered layer pore network due to partial cement paste dissolution followed by diffusion into the bulk pore solution to the surface. The extent of TiO2-NM release was not solely related to the cement degradation rate.
اظهر المزيد [+] اقل [-]Environmental exposure to TiO2 nanomaterials incorporated in building material
Thallium transformation and partitioning during Pb–Zn smelting and environmental implications النص الكامل
2016
Liu, Juan | Wang, Jin | Chen, Yongheng | Xie, Xiaofan | Qi, Jianying | Lippold, Holger | Luo, Dinggui | Wang, Chunlin | Su, Longxiao | He, Lucheng | Wu, Qiwei
Thallium (Tl) is a toxic and non-essential heavy metal. Raw Pb–Zn ores and solid smelting wastes from a large Pb–Zn smelting plant – a typical thallium (Tl) pollution source in South China, were investigated in terms of Tl distribution and fractionation. A modified IRMM (Institute for Reference Materials and Measurement, Europe) sequential extraction scheme was applied on the samples, in order to uncover the geochemical behavior and transformation of Tl during Pb–Zn smelting and to assess the potential environmental risk of Tl arising from this plant. Results showed that the Pb–Zn ore materials were relatively enriched with Tl (15.1–87.7 mg kg−1), while even higher accumulation existed in the electrostatic dust (3280–4050 mg kg−1) and acidic waste (13,300 mg kg−1). A comparison of Tl concentration and fraction distribution in different samples clearly demonstrated the significant role of the ore roasting in Tl transformation and mobilization, probably as a result of alteration/decomposition of related minerals followed by Tl release and subsequent deposition/co-precipitation on fine surface particles of the electrostatic dust and acidic waste. While only 10–30% of total Tl amounts was associated with the exchangeable/acid-extractable fraction of the Pb–Zn ore materials, up to 90% of total Tl was found in this fraction of the electrostatic dust and acidic waste. Taking into account the mobility and bioavailability of this fraction, these waste forms may pose significant environmental risk.
اظهر المزيد [+] اقل [-]In-situ characterization and assessment of arsenic mobility in lake sediments النص الكامل
2016
Sun, Qin | Ding, Shiming | Wang, Yan | Xu, Lv | Wang, Dan | Chen, Jing | Zhang, Chaosheng
In-situ characterization and assessment of arsenic (As) mobility in sediments was scarce. In this study, the distributions of labile As at a vertical resolution of 2 mm were obtained in the sediments of a large Lake Taihu through in-situ measurements using a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The DGT-labile As, interpreted as DGT flux (FDGT), exhibited three different patterns in the lake, with all the patterns generally showing an increasing mobility followed by a decreasing mobility with sediment depth. The mobility of As could be characterized by the average FDGT (0.06–1.27 pg cm−2 s−1) in the top 10 mm surface sediments, the maximal FDGT (FDGT-M, 0.14–2.44 pg cm−2 s−1) in the end of the initial increasing phase of FDGT, and the diffusion length (ΔL, 28–66 mm) from the depth showing the FDGT-M to the sediment-water interface. The upward mobilization of labile As from the deep sediments to the surface sediments and overlying water became evident when FDGT-M > 1.7 pg cm−2 s−1 or ΔL < 41 mm. The results, for the first time, showed a prospect in in-situ risk assessment of the pollution of sediment As. It was suggested that the increasing mobility of As in the upper sediments was controlled by the reduction of As(V) and the reductive dissolution of Fe(III) (hydr)oxides, while the decreasing mobility in the deep sediments was attributed to immobilization of As(III) by secondary Fe(II)-bearing minerals.
اظهر المزيد [+] اقل [-]