خيارات البحث
النتائج 1 - 10 من 171
A comparison of light-duty vehicles' high emitters fractions obtained from an emission remote sensing campaign and emission inspection program for policy recommendation النص الكامل
2021
Hassani, Amin | Safavi, Seyed Reza | Hosseini, Vahid
Urban transportation is one of the leading causes of air pollution in big cities. In-use emissions of vehicles are higher than the emission control certification levels. The current study uses a roadside remote sensing emission monitoring campaign to investigate (a) fraction of high emitters in the light-duty vehicle (LDV) fleet and their contributions to the total emissions, (b) emission inspection (I/M) programs' effectiveness, and (c) alternate fuel (natural gas) encouragement policy. LDVs consist of passenger or freight transport vehicles with four wheels equivalent to classes M1 and N1 of European union vehicle classifications. The motivation is to assess the current emission inspection program's success rate and study the impact of the increased natural gas vehicle market share policy. It is also meant to present and validate remote sensing as a possible backup method to the current I/M program.The emission remote sensing campaign was conducted to measure emissions of CO, HC, and NO of the LDV fleet. Fleet age, engine size, and fuel type (gasoline or natural gas) were extracted and correlated with emissions. It was found that CO and HC emissions are five times higher for cars more than fifteen years old of age compared to those less than five years old. Analyses of high-emitters showed that almost 20% of the fleet were high-emitters and responsible for roughly half of CO, HC, and NO emissions.The correlation between the I/M program and the remote sensing to identify high-emitters was weak. Which indicates the need for an improved I/M program. It shows that even a limited remote sensing campaign is beneficial as a complementary monitoring tool to the I/M program. The study showed the same fraction of high-emitters in natural gas (methane) vehicles, despite the national policies to increase natural gas vehicle fraction in the market for reduced emissions.
اظهر المزيد [+] اقل [-]Characterization of ambient carbon monoxide and PM 2.5 effects on fetus development, liver enzymes and TSH in Isfahan City, central Iran النص الكامل
2021
Nourouzi, Zohreh | Chamani, Atefeh
Ambient carbon monoxide (CO) and particulate matters (PMs) are two important air pollutants in urban areas with known impacts on fetuses. Hence, this study measured some biochemistry factors of 200 neonates with birth dates from January 19 to October 12, 2020, including the birth weight and height and the serum levels of ALT, AST, ALP, GGT, and TSH. The Support Vector Machine-fitted land-use regression approach was used to predict the spatio-temporal variability of intra-urban PM 2.5 and CO concentrations by month during the pregnancy period of the cases employing 5 variables of Digital Elevation Model (DEM), slope, and distance from Compressed Natural Gas (CNG) stations, Bus Rapid Transit (BRT) stations, and mines and industries. Spearman correlation analysis (p < 0.05) was performed between the neonate indices and mean monthly PM 2.5 and CO concentrations at the exact residential address of maternal cases and their nearby areas in 250, 500, 1000, 1500, and 2000 m-radius buffer rings. All modeling efforts succeeded in predicting CO and PM 2.5 levels with acceptable adjusted r² values. Northern Isfahan had relatively higher CO and PM 2.5 concentrations due to its adjacency to low-vegetated open lands and its high traffic load as compared to southern areas. The correlation results between the neonate biochemistry indices and mean PM 2.5 and CO concentrations were mostly positive in most buffer rings, especially in the >500 m-radius buffer rings for PM 2.5 and in the 2000 m-radius rings for CO. Although the correlation results of PM 2.5 followed a detectable trend in the buffer rings, the associations between CO and the neonate biochemistry indices differed significantly between the buffer rings. Results showed that increasing mean monthly concentration of CO and PM 2.5 may stimulate further production of liver enzymes while decreasing the birth weight and height.
اظهر المزيد [+] اقل [-]Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis النص الكامل
2019
Han, Jun | Liang, Yangshuo | Zhao, Bo | Wang, Yu | Xing, Futang | Qin, Linbo
In China, the huge amounts of energy consumption caused severe carcinogenic polycyclic aromatic hydrocarbon (PAHs) concentration in the soil and ambient air. This paper summarized that the references published in 2008–2018 and suggested that biomass, coal and vehicular emissions were categorized as major sources of PAHs in China. In 2016, the emitted PAHs in China due to the incomplete combustion of fuel was about 32720 tonnes, and the contribution of the emission sources was the sequence: biomass combustion > residential coal combustion > vehicle > coke production > refine oil > power plant > natural gas combustion. The total amount of PAHs emission in China at 2016 was significantly decreased due to the decrease of the proportion of crop resides burning (indoor and open burning).The geographical distribution of PAHs concentration demonstrated that PAHs concentration in the urban soil is 0.092–4.733 μg/g. At 2008–2012, the serious PAHs concentration in the urban soil occurred in the eastern China, which was shifted to western China after 2012.The concentration of particulate and gaseous PAHs in China is 1–151 ng/m3 and 1.08–217 ng/m3, respectively. The concentration of particle-bound PAHs in the southwest and eastern region are lower than that in north and central region of China. The incremental lifetime cancer risk (ILCR) analysis demonstrates that ILCR in the soil and ambient air in China is below the acceptable cancer risk level of 10−6 recommended by US Environmental Protection Agency (EPA), which mean that there is a low potential PAHs carcinogenic risk for the soil and ambient air in China.
اظهر المزيد [+] اقل [-]Near-source air quality impact of a distributed natural gas combined heat and power facility النص الكامل
2019
Yang, Bo | Gu, Jiajun | Zhang, Tong | Zhang, K Max
The wide adoption of combined heat and power (CHP) can not only improve energy efficiency, but also strengthens energy system resiliency. While CHP reduces overall emissions compared to generating the same amount of electricity and heat separately, its on-site nature also means that CHP facilities operate in populated areas, raising concerns over their near-source air quality impact. Evaluation of the near-source impact of distributed CHP is limited by emission data availability, especially in terms of particulate matter (PM). In this paper, we report on stack emission testing results of a community-scale CHP plant with two natural gas turbine units (15 MW each) from measurements conducted in both 2010 and 2015, and assess the near-source air quality impact using an integrated modeling framework using the stack test results, site-specific meteorological data and terrain profiles with buildings. The NOx removal efficiency by selective catalytic reduction (SCR) is estimated to be ∼83% according to the emission testing. The integrated framework employs AERMOD to screen air quality in a 2.7 km × 2.3 km domain from 2011 to 2015 to identify the highest ground-level concentrations (GLCs). Examining the corresponding meteorological conditions, we find that those high GLCs appeared during the stable atmospheric boundary layer with relative high wind speed. Next, the worse-case scenarios identified from the screening process are simulated using the detailed Unsteady Reynolds Averaged Navier-Stokes (URANS) model coupled with a chemistry solver. The results generally show low GLCs of primary PM₂.₅ for this case study. However, our analysis also suggests greater building downwash impacts with the presence of taller and denser urban structures. Therefore, the near-source impact of natural gas-fired CHP in large metropolitan areas is worthy of further investigation.
اظهر المزيد [+] اقل [-]Occurrence, composition profiles and risk assessment of polycyclic aromatic hydrocarbons in municipal sewage sludge in China النص الكامل
2019
Sun, Shao-Jing | Zhao, Ze-Bin | Li, Bo | Ma, Li-Xin | Fu, Dong-Lei | Sun, Xia-Zhong | Thapa, Samit | Shen, Ji-Min | Qi, Hong | Wu, Yi-Ning
A nationwide survey, including 75 sludge samples and 18 wastewater samples taken from different wastewater treatment plants (WWTPs) from 23 cities, was carried out to investigate the occurrence and composition profiles of polycyclic aromatic hydrocarbons (PAHs) in China. In total, the concentrations of ∑16PAHs in sludge ranged from 565 to 280,000 ng/g (mean: 9340 ng/g) which was at a moderate level in the world. The composition profiles of PAHs were characterized by 3- and 4-ring PAHs in textile dyeing sludge and 4- and 5-ring PAHs in domestic sludge. Significant variations in regional distribution of PAHs were observed. Both the principal components analysis and diagnostic ratios revealed that vehicle exhaust, coal and natural gas combustion were the main sources of PAHs in China. The estimated concentrations of PAHs were 3820 ng/L and 1120 ng/L in influents and effluents of the WWTPs, respectively. The high toxic equivalent quantity (TEQ) values of PAHs are ascribed to the high PAH levels. Risk quotient values (RQs) in sludge indicated that there was low potential risk to soil ecosystem after sludge had been applied one year except for indeno [1,2,3-cd]pyrene (IcdP) detected in Huaibei, Anhui province.
اظهر المزيد [+] اقل [-]Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions? النص الكامل
2018
Agarwal, Avinash K. | Ateeq, Bushra | Gupta, Tarun | Singh, Akhilendra P. | Pandey, Swaroop K. | Sharma, Nikhil | Agarwal, Rashmi A. | Gupta, Neeraj K. | Sharma, Hemant | Jain, Ayush | Shukla, Pravesh C.
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries.
اظهر المزيد [+] اقل [-]Environmental and individual PAH exposures near rural natural gas extraction النص الكامل
2018
Paulik, L Blair | Hobbie, Kevin A. | Rohlman, Diana | Smith, Brian W. | Scott, Richard P. | Kincl, Laurel | Haynes, Erin N. | Anderson, Kim A.
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants’ homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
اظهر المزيد [+] اقل [-]Linking otolith microchemistry and surface water contamination from natural gas mining النص الكامل
2018
Keller, David H. | Zelanko, Paula M. | Gagnon, Joel E. | Horwitz, Richard J. | Galbraith, Heather S. | Velinsky, David J.
Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01–1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW.
اظهر المزيد [+] اقل [-]Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water النص الكامل
2017
Folkerts, Erik J. | Blewett, Tamzin A. | He, Yuhe | Goss, Greg G.
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24–72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.
اظهر المزيد [+] اقل [-]PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological effects النص الكامل
2017
Cetin, Banu | Ozturk, Fatma | Keles, Melek | Yurdakul, Sema
Istanbul, one of the mega cities in the world located between Asia and Europe, has suffered from severe air pollution problems due to rapid population growth, traffic and industry. Atmospheric levels of PAHs and PCBs were investigated in Istanbul at 22 sampling sites during four different sampling periods using PUF disk passive air samplers and spatial and temporal variations of these chemicals were determined. Soil samples were also taken at the air sampling sites. At all sites, the average ambient air Σ15PAH and Σ41PCB concentrations were found as 85.6 ± 68.3 ng m−3 and 246 ± 122 pg m−3, respectively. Phenanthrene and anthracene were the predominant PAHs and low molecular weight congeners dominated the PCBs. The PAH concentrations were higher especially at urban sites close to highways. However, the PCBs showed moderately uniform spatial variations. Except four sites, the PAH concentrations were increased with decreasing temperatures during the sampling period, indicating the contributions of combustion sources for residential heating, while PCB concentrations were mostly increased with the temperature, probably due to enhanced volatilization at higher temperatures from their sources. The results of the Factor Analysis represented the impact of traffic, petroleum, coal/biomass and natural gas combustion and medical waste incineration plants on ambient air concentrations. A similar spatial distribution trend was observed in the soil samples. Fugacity ratio results indicated that the source/sink tendency of soil for PAHs and PCBs depends on their volatility and temperature; soil generally acts as a source for lighter PAHs and PCBs particularly in higher temperatures while atmospheric deposition is a main source for higher molecular weight compounds in local soils. Toxicological effect studies also revealed the severity of air and soil pollution especially in terms of PAHs in Istanbul.
اظهر المزيد [+] اقل [-]